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Label-free microscopy that has chemical contrast and high acquisition speeds up to video rates 

has recently been made possible using stimulated Raman scattering (SRS) microscopy. SRS 

imaging offers high sensitivity, but the spectral specificity of the original narrowband 

implementation is limited, making it difficult to distinguish chemical species with overlapping 

Raman bands. Here, we present a highly specific imaging method that allows mapping of a 

particular chemical species in the presence of interfering species, based on tailored multiplex 

excitation of its vibrational spectrum. This is implemented by spectral modulation of a broadband 

pump beam at a high frequency (>1 MHz), allowing detection of the SRS signal of the 

narrowband Stokes beam with high sensitivity. Using the scheme, we demonstrate quantification of cholesterol in 

the presence of lipids, and real-time three-dimensional spectral imaging of protein, stearic acid and oleic acid in 

live Caenorhabditis elegans.

Figures at a glance
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1.  Figure 1: Principle of SRS. 
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a, Energy diagram of SRS. If the difference frequency of pump and Stokes beams is resonant with 

a molecular vibration, SRS occurs and a molecule of the sample is excited from its ground state to 

the vibrational excited state. b, As a result, a pump photon of the excitation field is annihilated 

(SRL, stimulated Raman loss) and a Stokes photon is created (SRG, stimulated Raman gain) as 

required from energy conservation.

See larger

2.  Figure 2: Excitation schemes of SRS. 

 
a, Narrowband excitation. Narrowband laser beams at pump frequency ωp and Stokes frequency 

ωS excite a single molecular vibration Ω. The resulting SRL or SRG of the pump or Stokes intensity 

is measured. b, Multiplex excitation. The pump beam is broadband to excite multiple molecular 

vibrations Ωi of the sample simultaneously. A spectral component Ip,i with frequency ωp,i 

experiences an intensity loss ΔIp,i when its frequency difference with the narrowband Stokes beam 

Δωi = ωp,i − ωS matches Ωi. The total intensity gain of the Stokes beam ΔIS = ∑iΔIS,i originates 

from the total SRS of all molecular vibrations of the sample. Micro-spectroscopy is performed by 

dispersing the transmitted pump light onto a multi-element detector and measuring the individual 

ΔIp,i. c, Spectrally tailored excitation. The broadband pump spectrum is shaped to selectively excite 

only vibrations of a target molecule (for example, Ω1 and Ω3) and avoid frequencies resonant with 

interfering species (such as Ω2 and Ω4). The total ΔIS, which only contains contributions ΔIS,1 and 
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ΔIS,3 of the target molecule, is measured with a single-element detector.

See larger

3.  Figure 3: Spectral modulation scheme. 

 
Spectrally tailored excitation allows the targeting of a vibrational resonance that is excited, but it 

does not directly improve chemical specificity over narrowband excitation because there is no 

mechanism to suppress signal from overlapping bands of interfering species. In STE-SRS, the 

broadband pump spectrum is therefore shaped twice. The first spectrum e+(ωp) mainly contains 

spectral components resonant with the target species (Ω1 and Ω3). The second spectrum e−(ωp) 

mainly contains spectral components resonant with the interfering species (Ω2 and Ω4) and is 

weighted to cancel out the interfering signal generated by e+(ωp). The difference SRS signal from e
+(ωp) and e−(ωp) can therefore be freed from all interfering contributions. For simplicity, the two 

spectra can be combined into one effective excitation mask e(ωp) = e+(ωp) − e−(ωp). Such 

subtraction can be implemented for real-time imaging by modulating between the two excitation 

spectra at high frequency and extracting the resulting modulation transfer with a lock-in amplifier.

See larger

4.  Figure 4: STE-SRS microscopy setup. 

 
Individual spectral components of the broadband pump beam are polarization-shaped in a 

View all
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reflection-type pulse-shaper by dispersing the broadband beam with a grating onto an SLM. In- and 

out-going beams (arrows) are separated by a small spatial separation on a splitting mirror (M). 

Successive polarization modulation (Pockels cell) and passing through a polarization analyser 

creates a spectrally modulated pump beam, which switches between originally s- and p-polarized 

spectral components. Pump and Stokes beams are spatially overlapped with a dichroic mirror 

(DM), temporally synchronized with electronics, and aligned into a laser-scanning microscope with 

scanning mirrors, an objective lens (OL) and a condenser (C). After passing through the sample 

(S), the pump beam is blocked with a filter (F), and the Stokes beam is detected with a large-area 

InGaAs photodiode (PD). The signal is analysed with a lock-in amplifier locked into the modulation 

of the Pockels cell to provide the intensity of a pixel.

See larger

5.  Figure 5: Characterization of STE-SRS. 

 
a, Spontaneous Raman spectra of cholesterol (green) and oleic acid (red), which have no isolated 

Raman vibrations but distinct Raman signatures. b, Expected SRS spectra for cholesterol (green) 

and oleic acid (red) calculated by normalizing the spontaneous Raman spectra with the laser 

excitation spectrum (black dotted). c, Excitation mask for selective detection of cholesterol (target 

species) in the presence of oleic acid (interfering species) generated from the SRS spectra shown 

in b, satisfying equations (3) using the procedure described in the text. d, Linear dependence of the 

STE-SRS signal on concentrations of cholesterol allows for straightforward signal quantification. e, 

STE-SRS allows interference-free detection. STE-SRS signal with the excitation mask shown in c 

as a function of oleic acid concentration at constant cholesterol concentration (0.6 M) dissolved in 
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deuterated chloroform, showing no false signal increase due to the increasing concentration of 

interferent. f, STE-SRS allows suppression against interfering species in a three-component 

system. Ternary plot of mixtures of cholesterol, oleic acid and ethanol solutions in deuterated 

chloroform. Solid dots show actual concentration of the mixtures and red circles show 

measurement with STE-SRS.

See larger

6.  Figure 6: Imaging of lipid storage in C. elegans. 

 
a, SRS spectra of oleic acid (cyan), stearic acid (magenta) and protein (orange) as computed from 

the spontaneous Raman library by normalizing with the measured laser excitation spectrum (dotted 

line). b, Spectral masks computed from spectra in a and used for the imaging. c–e, Spectral 

images taken from the same area of a C. elegans, applying spectral masks for protein (c), oleic 

acid (d) and stearic acid (e). Comparison of d and e shows that oleic and stearic acid deposits co-

localize and that there are no isolated deposits of either species. Comparison of c and d shows 

that the lipid deposits further co-localize with protein-dense organelles. f,g, Spectral images with 

protein and oleic acid masks, respectively, from a different region in the worm, further investigate 

this aspect. Arrows highlight both subdermal and intestinal lipid storage depots. Imaging speed: 

30 s per frame, with 512 × 512 sampling. Scale bars, 25 µm.

See larger
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Recently, there has been an increase in the level of interest in label-free biomedical imaging based on 

vibrational spectroscopy. It is particularly advantageous in the imaging of small molecules such as metabolites and 

drugs, because the use of fluorophores often introduces perturbations and is subject to photobleaching. Recent advances 

in coherent Raman scattering (CRS) microscopy, including coherent anti-Stokes Raman scattering (CARS)1, 2, 3 

and stimulated Raman scattering (SRS) microscopy4, 5, 6, 7, have led to orders of magnitude higher sensitivity 

than conventional Raman microscopy, and imaging speeds up to video rates for in vivo imaging8, 9.

In CRS, the sample is coherently excited by two lasers, one at the pump frequency ωp and the other at the Stokes 

frequency ωS. When their frequency difference Δω = ωp − ωS matches an intrinsic molecular vibration of the sample 

of frequency Ω, both CARS and SRS occur due to the nonlinear interaction of molecules with the laser pulses (Fig. 1a). 

In CARS, a signal is generated at the new anti-Stokes frequency ωaS = 2ωp − ωS. In SRS, a pump photon is converted to 

a Stokes photon when a molecule is excited from the vibrational ground state into the first vibrational excited state. 

SRS therefore results in an intensity loss ΔIp of the pump beam intensity Ip, and an intensity gain ΔIS of the Stokes 

beam intensity IS (Fig. 1b).

Figure 1: Principle of SRS. 

http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2010.294.html (7 of 30) [1/28/2011 10:44:35 AM]

javascript:;


 

a, Energy diagram of SRS. If the difference frequency of pump and Stokes beams is resonant with a molecular vibration, SRS 

occurs and a molecule of the sample is excited from its ground state to the vibrational excited state. b, As a result, a pump photon 

of the excitation field is annihilated (SRL, stimulated Raman loss) and a Stokes photon is created (SRG, stimulated Raman gain) 

as required from energy conservation.

●     Full size image (144 KB)
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CARS suffers from a non-resonant background signal, which is present even without vibrational resonance10. SRS is 

free from this complication, and the SRS spectra are identical to those of spontaneous Raman scattering, allowing 

easy assignment based on Raman literature. Furthermore, its sensitivity is approaching the shot-noise limit, and its signal 

4, 5, 6, 7, 9
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is linear in concentration. This makes SRS a more desirable technique for microscopy than CARS .

SRS microscopy under biocompatible excitation conditions was recently demonstrated through the implementation of a 

high-frequency modulation scheme to detect the relatively low SRS signal in the presence of laser noise. This also 

allows separation of the SRS signal from slow variations of the transmitted laser intensity due to linear scattering 

and absorption by the sample during raster scanning of the overlapped foci of the pump and Stokes beams5, 6, 7. To do 

so, either the pump or the Stokes beam is modulated at a high frequency and the modulation transfer to the other beam 

due to SRS of the sample is detected with phase-sensitive detection. As laser noise typically occurs at low frequencies, 

we use a high modulation frequency (>1 MHz) to achieve a near shot-noise-limited sensitivity of (ΔI/I) < 10−8 for 

an averaging time of 1 s, allowing superb sensitivity in biological samples at moderate laser power5.

In the original implementation of SRS microscopy, we used narrowband laser beams (transform-limited picosecond 

pulse widths) to excite a single Raman-active vibrational mode (Fig. 2a)5, 9. However, other vibrational modes of the 

same species were not excited. This approach therefore does not take full advantage of the chemical specificity of 

Raman scattering and fails to specifically detect molecules with overlapping Raman bands.

Figure 2: Excitation schemes of SRS. 
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a, Narrowband excitation. Narrowband laser beams at pump frequency ωp and Stokes frequency ωS excite a single molecular 

vibration Ω. The resulting SRL or SRG of the pump or Stokes intensity is measured. b, Multiplex excitation. The pump beam 

is broadband to excite multiple molecular vibrations Ωi of the sample simultaneously. A spectral component Ip,i with frequency ωp,

i experiences an intensity loss ΔIp,i when its frequency difference with the narrowband Stokes beam Δωi = ωp,i − ωS matches Ωi. 
The total intensity gain of the Stokes beam ΔIS = ∑iΔIS,i originates from the total SRS of all molecular vibrations of the sample. 

Micro-spectroscopy is performed by dispersing the transmitted pump light onto a multi-element detector and measuring the 

individual ΔIp,i. c, Spectrally tailored excitation. The broadband pump spectrum is shaped to selectively excite only vibrations of a 

target molecule (for example, Ω1 and Ω3) and avoid frequencies resonant with interfering species (such as Ω2 and Ω4). The total 

ΔIS, which only contains contributions ΔIS,1 and ΔIS,3 of the target molecule, is measured with a single-element detector.
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Instead of using two narrowband pulses, we use a pump beam with a broad bandwidth and a Stokes beam with a 

narrow bandwidth, so that a wide spectral range of vibrational frequencies can be excited simultaneously11. Such 

multiplex excitation (Fig. 2b) has previously been performed in micro-spectroscopy by using an array detector and 

slow sample scanning4, 12, 13, 14. However, such micro-spectroscopy is not compatible with high-sensitivity 

detection, because the high-frequency modulation described above cannot be used easily. Here, we present 

spectrally tailored excitation SRS (STE-SRS) microscopy, which provides images of a particular chemical species 

through the collective excitation of selected vibrational frequencies (Fig. 2c). Such targeted excitation provides 

chemical selectivity based on full Raman signatures, and allows fast quantification and mapping of the targeted 

species even in the presence of interfering species.

Principle

AbstractIntroductionPrincipleResultsDiscussionMethodsReferencesAcknowledgements

Author informationSupplementary information

In STE-SRS we use multiplex excitation with a broadband pump and a narrowband Stokes beam. The general principle 

is that one can tailor the pump spectrum so that it predominantly probes the vibrational resonances of a target species 

(for example, Ω1 and Ω3 in Fig. 2c). This is done by masking the spectral components of the broadband pump pulse using 

a pulse-shaper with a spatial light modulator (SLM)15. We then detect the total intensity of the narrowband Stokes beam 

with a single photodiode, instead of multiplexed spectral detection as in micro-spectroscopy4.

However, this first excitation spectrum e+(ωp) also excites residual signal from interfering species. To discriminate 

against such interference, we use another excitation spectrum e−(ωp), which mainly probes the vibrational resonances of 

●     Previous 

figure
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the interfering species (for example, Ω2 and Ω4 in Fig. 3), then measure the SRS difference signal between the 

two excitation spectra, thereby causing the residual signal from interfering species to vanish.

Figure 3: Spectral modulation scheme. 

 

Spectrally tailored excitation allows the targeting of a vibrational resonance that is excited, but it does not directly improve 

chemical specificity over narrowband excitation because there is no mechanism to suppress signal from overlapping bands 

of interfering species. In STE-SRS, the broadband pump spectrum is therefore shaped twice. The first spectrum e+(ωp) mainly 

contains spectral components resonant with the target species (Ω1 and Ω3). The second spectrum e−(ωp) mainly contains 

spectral components resonant with the interfering species (Ω2 and Ω4) and is weighted to cancel out the interfering signal generated 

by e+(ωp). The difference SRS signal from e+(ωp) and e−(ωp) can therefore be freed from all interfering contributions. For simplicity, 

the two spectra can be combined into one effective excitation mask e(ωp) = e+(ωp) − e−(ωp). Such subtraction can be implemented 

for real-time imaging by modulating between the two excitation spectra at high frequency and extracting the resulting 

modulation transfer with a lock-in amplifier.
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In a mixture of n chemical species, the contribution of a particular chemical species i to the detected SRS difference signal 

is linearly dependent on its concentration ci, its Raman spectrum σi(Ω = ωp – ωS) and the spectrally shaped 
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broadband pump beam, alternating between two excitation spectra e+(ωp) and e−(ωp): 

 

For simplicity, the alternating spectra can be denoted as an excitation mask e(ωp) = e+(ωp) − e−(ωp), as illustrated in 

Fig. 3, in which positive contributions represent e+(ωp) and negative contributions e−(ωp).

We can now choose a particular excitation mask ej(ωp) to selectively probe a target species j in the presence of the 

other species. We do so by fulfilling 

 

In other words, the excitation mask ej(ωp) for species j is orthogonal to every interfering species. Hence, the contribution 

of each interfering species to the SRS signal vanishes, independent of its concentration, and the measured signal 

only reflects the abundance of the target species j.

In practice, the broadband pump beam can only be shaped as a collection of N discrete spectral components, and 

the integral in equation (2) becomes a summation over all spectral components k 

 

If the total number of species in the sample n is equal to the number of spectral components N, ejk is uniquely determined 

by equation (3) and can be calculated by the inverse matrix of σik. The only inputs required are the spontaneous 
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Raman spectra of all the species involved. Normally the total number of interfering species in a sample is much less than 

N (typically 80 in our implementation), and equation system (3) is underdetermined. We therefore calculate the 

Moore–Penrose pseudo-inverse of σik. This procedure is similar to the chemometric method known as classical 

least squares (CLS), that is, projecting the target spectrum onto the subspace orthogonal to all interfering spectra16.

To detect the difference SRS signal in real time and with high sensitivity, we modulate between the two excitation spectra 

at high frequency (4 MHz). To do so, we combine a polarization pulse-shaper with an SLM, a polarization modulator and 

a polarization analyser (Fig. 4). Spectral components of the first excitation spectrum are shaped to be s-polarized, 

and components of the second excitation spectrum are p-polarized. Fast switching between the two excitation masks 

is achieved by the Pockels cell. After passing through the polarization analyser, the broadband pump beam is again 

linearly polarized and spectrally modulated. Different target species j can then be selected by loading different 

polarization masks onto the SLM between consecutive image frames.

Figure 4: STE-SRS microscopy setup. 
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Individual spectral components of the broadband pump beam are polarization-shaped in a reflection-type pulse-shaper by 

dispersing the broadband beam with a grating onto an SLM. In- and out-going beams (arrows) are separated by a small 

spatial separation on a splitting mirror (M). Successive polarization modulation (Pockels cell) and passing through a 

polarization analyser creates a spectrally modulated pump beam, which switches between originally s- and p-polarized 

spectral components. Pump and Stokes beams are spatially overlapped with a dichroic mirror (DM), temporally synchronized 

with electronics, and aligned into a laser-scanning microscope with scanning mirrors, an objective lens (OL) and a condenser (C). 

After passing through the sample (S), the pump beam is blocked with a filter (F), and the Stokes beam is detected with a large-

area InGaAs photodiode (PD). The signal is analysed with a lock-in amplifier locked into the modulation of the Pockels cell to 

provide the intensity of a pixel.
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If such spectral modulation is performed at a high frequency (higher than the low-frequency laser noise), no 

further amplitude modulation is required for the high-sensitivity detection of SRS. We measure the modulation transfer to 

the Stokes beam with a phase sensitivity detector (lock-in amplifier) identical to the implementation of narrowband 

SRS microscopy5. The amplitude of the transferred modulation is described by equation (1), as the phase-sensitive 

detector interprets the in and out phase signals as the first and second excitation spectra, respectively, and 

automatically gives the difference signal. STE-SRS has the advantage that it combines the high sensitivity of high-

frequency modulation with improved spectral specificity of multiplex excitation. STE-SRS is also readily compatible 

with beam-scanning microscopy and allows for fast imaging speeds and real-time image display.
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Characterization and concentration measurement in test solutions

We first characterized the STE-SRS signal in a two-component solution of cholesterol and oleic acid, which 

have overlapping Raman bands. Figure 5a shows the spontaneous Raman spectra of the two compounds, and Fig. 5b 

the SRS spectra for a particular broadband pump spectrum (dotted line). We calculated the excitation mask for the 

detection of cholesterol (target species) in the presence of oleic acid (interfering species) from the SRS spectra 

(Fig. 5c) according to equations (3).

Figure 5: Characterization of STE-SRS. 

 

a, Spontaneous Raman spectra of cholesterol (green) and oleic acid (red), which have no isolated Raman vibrations but 

distinct Raman signatures. b, Expected SRS spectra for cholesterol (green) and oleic acid (red) calculated by normalizing 

the spontaneous Raman spectra with the laser excitation spectrum (black dotted). c, Excitation mask for selective detection 

of cholesterol (target species) in the presence of oleic acid (interfering species) generated from the SRS spectra shown in b, 

satisfying equations (3) using the procedure described in the text. d, Linear dependence of the STE-SRS signal on concentrations 

of cholesterol allows for straightforward signal quantification. e, STE-SRS allows interference-free detection. STE-SRS signal with 

the excitation mask shown in c as a function of oleic acid concentration at constant cholesterol concentration (0.6 M) dissolved 

in deuterated chloroform, showing no false signal increase due to the increasing concentration of interferent. f, STE-SRS 

allows suppression against interfering species in a three-component system. Ternary plot of mixtures of cholesterol, oleic acid 

and ethanol solutions in deuterated chloroform. Solid dots show actual concentration of the mixtures and red circles 
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show measurement with STE-SRS.
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For this excitation mask the SRS difference signal is indeed linear with concentration of cholesterol (Fig. 5d) 

and independent of the concentration of oleic acid (Fig. 5e). STE-SRS can suppress against signals from interfering 

species that are up to ~2,000× stronger (Supplementary Fig. S1b), because laser intensity fluctuations of individual 

spectral components of a mode-locked laser are common-mode noise and can be cancelled out. Such strong 

discrimination against interfering species is not possible with sequential measurements of different Raman bands 

by narrowband excitation because the signal fluctuations of different bands are uncorrelated. The detection limit of STE-

SRS for cholesterol is 5 mM with 1 s time constant (Supplementary Fig. S1a).

We further demonstrated that STE-SRS can distinguish more than two species. We prepared 13 different three-

component solutions with varying concentrations of cholesterol, oleic acid and ethanol in deuterated chloroform. For each 

of the solutions we sequentially applied three excitation masks (Supplementary Fig. S2c), which were calculated for 

the selective detection of each of the three compounds in the presence of the other two, based on the spontaneous 

Raman spectra show in Supplementary Fig. S2a. We used the signal from the pure solutions to calibrate the instrument 

and made use of the linear concentration dependence of spectral SRS imaging to correlate the signal with the 

absolute concentration. The ternary plot in Fig. 5f shows that the concentration of the three compounds can be 

accurately measured with STE-SRS.

Imaging proteins and specific lipids in vivo

As an important application of STE-SRS, we demonstrated the selective imaging of different types of fatty acids in 

vivo. CARS microscopy has successfully been applied to study lipid storage in the nematode Caenorhabditis elegans, 

a common model organism in lipid research17, to overcome the shortcomings of lipid staining techniques that often fail 
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to stain all lipids uniformly18. We recently applied narrowband SRS imaging to image the distribution of unsaturated lipids 

in cells based on the characteristic CH vibration5. However, many lipid species do not have isolated vibrational bands. 

Thus, their distributions and dynamics cannot be probed by narrowband SRS.

We imaged the distributions of saturated and unsaturated fatty acids as well as proteins in C. elegans, which are the 

three main contributors to signal in the CH-region of Raman spectra of cells18, 19. Oleic and stearic acid were chosen 

as representative spectroscopic samples for unsaturated and saturated lipids, respectively, as they naturally occur in 

liquid and gel phases at room temperature. From the SRS spectra of the three pure compounds (Fig. 6a) we were able 

to generate three independent masks (Fig. 6b) that could selectively probe any of the three species in the presence of 

the other two. We could therefore selectively image a particular species by applying the corresponding mask to the 

SLM before image acquisition. Before imaging the actual worm sample, we first confirmed the correct choice of 

excitation masks in a test sample (Supplementary Fig. S3). We then took three images of the same region in the worm, 

one for each excitation mask, showing the distribution of protein (Fig. 6c), oleic acid (Fig. 6d) and stearic acid (Fig. 6e).

Figure 6: Imaging of lipid storage in C. elegans. 
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a, SRS spectra of oleic acid (cyan), stearic acid (magenta) and protein (orange) as computed from the spontaneous Raman library 

by normalizing with the measured laser excitation spectrum (dotted line). b, Spectral masks computed from spectra in a and used 

for the imaging. c–e, Spectral images taken from the same area of a C. elegans, applying spectral masks for protein (c), oleic acid 

(d) and stearic acid (e). Comparison of d and e shows that oleic and stearic acid deposits co-localize and that there are no 

isolated deposits of either species. Comparison of c and d shows that the lipid deposits further co-localize with protein-
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dense organelles. f,g, Spectral images with protein and oleic acid masks, respectively, from a different region in the worm, 

further investigate this aspect. Arrows highlight both subdermal and intestinal lipid storage depots. Imaging speed: 30 s per frame, 

with 512 × 512 sampling. Scale bars, 25 µm.

●     Full size image (1,020 KB)
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A comparison of Fig. 6d and e shows that both compounds and their derivatives co-localize. In particular, there are 

no isolated storage areas that contain a single species only. Furthermore, fat deposits co-localize with areas of 

increased protein aggregation. Figure 6f,g and three-dimensional image stacks (Supplementary Video 1) from a 

different region in the worm show this in more detail. The arrows in the images indicate the two independent lipid 

storage areas, the subdermal and intestinal deposits. It is known that in intestinal cells, fat is stored in lysosome-

related organelles17, which suggests why fat deposits are surrounded by the larger protein aggregates. With STE-SRS 

we can further see that the fat deposits of the subdermis are also surrounded by protein aggregates.

Discussion
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Careful analysis of spectroscopic data to extract signal with a known spectral feature from complex and often noisy 

spectra is widely used, and is referred to as chemometrics20. In spontaneous Raman spectroscopy, chemometric 

methods have been used to understand hydrogen bonding21, detect glucose levels22 and bone degeneration23, and 

image cells24. Although these methods have been used to analyse spectra computationally after data acquisition with 

a multi-element detector, multivariate optical computation has recently made use of a tailored multiband colour filter in 

front of a single-element detector25, 26. STE-SRS uses the same idea, but tailors the excitation spectra rather than 

the emission spectra.
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With STE-SRS we have introduced a microcopy technique that combines fast speed with high chemical selectivity. 

Several groups have recently advocated micro-spectroscopy based on spontaneous Raman scattering to complement 

rapid narrow band CARS imaging to provide spectroscopic analyses at selected positions19, 27. Our spectral SRS 

imaging provides spectroscopic information based on multiple Raman bands for every pixel of an image rather than for a 

few selected points.

In comparison with multiplex CARS microscopy12, 13, 14, 28, spectral SRS imaging has the advantage that no 

data processing is needed, because the SRS excitation spectra are identical to those of spontaneous Raman scattering5, 

28. Furthermore, pixel dwell times in spectral SRS imaging can be orders of magnitude shorter than those in 

multiplex CARS14. In contrast to CARS pulse-shaping approaches29, 30, 31, 32, 33, STE-SRS requires amplitude-

shaping instead of phase-shaping. Any phase manipulation, including that used in interferometric CARS34, 35, is prone 

to phase errors in biological samples, where refractive indices vary across the sample. In general, all CARS-

related techniques are complicated by coherent image artefacts due to constructive and destructive spatial interferences 

at the dimension comparable to the diffraction limit spot36.

Note that if unknown chemical species exist in a sample, their Raman spectra need to be taken before STE-SRS 

microscopy can be carried out. STE-SRS does not diminish the need for Raman micro-spectroscopy. However, 

it significantly increases the speed at which chemical species can be mapped, which are often known a priori in 

biological samples. In principle, the number of species can be as high as the number of spectral pixels of tailored 

excitation. We also note that the principle of spectrally tailored excitation can be further extended to other 

modulation transfer techniques such as two-colour, two-photon absorption37, pump–probe38 or stimulated emission39.

The combination of high specificity and high sensitivity of STE-SRS microscopy offers new potential for vibrational 

imaging in biology and medicine.
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The 1,064 nm narrowband Stokes beam was generated by a picosecond Nd:YVO4 laser (HighQ, Picotrain), and the 

tunable broadband pump was obtained using a femtosecond Ti:sapphire laser (Coherent, Mira900) with a repetition rate 

of 76 MHz. The two lasers were synchronized using electronic synchronization (Coherent, Synchrolock) with timing jitter 

of <250 fs (refs 13,40). To minimize nonlinear photodamage41, 42, 43, the pump beam was chirped to picoseconds 

by passing the beam through 35 cm of glass (Edmund Optics, NT63-091) without signal loss. Polarization pulse-

shaping was achieved with a custom pulse-shaper from Biophotonic Solutions Inc. The pulse-shaper consisted of a 

grating (to disperse the broadband pulse) and a curved mirror (~1 m focal length to achieve a spectral resolution of 

0.1 nm) to focus the spectral components onto a polarization SLM (CRI, SLM-640) in a 4f geometry in reflection 

mode15. The throughput of the pulse-shaper was ~55 ± 5% at a centre wavelength of 800 nm depending on the 

input polarization. The SLM was controlled using custom software control using LabView (National Instruments). To 

allow fast modulation between different polarization states (at 4 MHz), we used a combination of a custom-built Pockels 

cell (based on RTP crystals by Raicol) and polarization analyser. The Pockels cell was driven with a sine wave from 

the reference output of the lock-in amplifier (Stanford Research Systems, SR844RF), which was amplified to 1 W 

and efficiently coupled to the crystal with a resonant transformer. Pump and Stokes beams were spatially overlapped 

using an 850 nm long-pass mirror (Chroma Technology), temporally overlapped with the synchronization electronics 

by maximizing the cross-correlation signal on an autocorrelator (Spectra-Physics, 409 Autocorrelator) and coupled into 

a modified laser-scanning upright microscope (Olympus, BX61WI/FV300). We used a ×60, 1.2 NA water immersion 

lens (Olympus, UPlanApo/IR) as excitation objective and the light was collected in transmission with a 1.4 NA oil 

condenser (Nikon). For imaging of biological samples, the average power was reduced to 15 mW for the pump and 

120 mW for the Stokes. A large-area InGaAs photodiode (New England Photoconductors, I5-3-5) with a reverse bias of 

12 V was used for detection of the narrowband Stokes beam, after blocking the spectrally modulated pump beam with a 

long-pass filter (Chroma Technology, HHQ925LP). The photodiode output was band-pass-filtered around the 
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modulation rate of 4 MHz with a custom-made bandpass filter. A high-frequency lock-in amplifier (Stanford 

Research Systems, SR844RF) was used to demodulate the Stokes intensity. A time constant of 10 µs (‘no filter’ mode) 

was used for imaging and 1 s for the solution spectroscopy studies. The analog output of the lock-in amplifier was fed into 

an input of the microscope analog-to-digital converter to provide the intensity of a pixel.
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