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Environmental stress leads to dramatic transcriptional reprogram-
ming, which is central to plant survival. Although substantial
knowledge has accumulated on how a few plant cis-regulatory
elements (CREs) function in stress regulation, many more CREs re-
main to be discovered. In addition, the plant stress cis-regulatory
code, i.e., how CREs work independently and/or in concert to spec-
ify stress-responsive transcription, is mostly unknown. On the basis
of gene expression patterns under multiple stresses, we identified
a large number of putative CREs (pCREs) in Arabidopsis thaliana
with characteristics of authentic cis-elements. Surprisingly, biotic
and abiotic responses are mostly mediated by two distinct pCRE
superfamilies. In addition, we uncovered cis-regulatory codes spec-
ifying how pCRE presence and absence, combinatorial relationships,
location, and copy number can be used to predict stress-responsive
expression. Expression prediction models based on pCRE combina-
tions perform significantly better than those based on simply pCRE
presence and absence, location, and copy number. Furthermore,
instead of a few master combinatorial rules for each stress condi-
tion, many rules were discovered, and each appears to control only
a small subset of stress-responsive genes. Given there are very few
documented interactions between plant CREs, the combinatorial
rules we have uncovered significantly contribute to a better under-
standing of the cis-regulatory logic underlying plant stress response
and provide prioritized targets for experimentation.
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Environmental stress, both abiotic and biotic, is the key con-
straint to plant productivity (1). Under stressful environments,

plants undergo significant physiological and/or morphological
alterations (2). Such plastic responses are particularly relevant for
plants, which need to respond to ambient conditions due to their
sessile nature (2). At the molecular level, one of the most imme-
diate responses to stress is the extensive reprogramming of tem-
poral and spatial transcription. In the past two decades, substantial
progress has been made in understanding how this reprogramming
occurs via the interaction of transcription factors with a handful of
cis-regulatory elements (CREs). Examples of these well-charac-
terized CREs include abscisic acid-responsive element (ABRE)
(3, 4), dehydration-responsive element (DRE) (5), C-repeat (6),
and W-box (7). In Arabidopsis thaliana, there are an estimated
1,346–2,290 putative transcription factor genes (8, 9), and many
are likely involved in regulating stress-responsive transcription.
However, the corresponding CREs of most of these transcription
factors are not known. In addition, it is not clear to what degree the
known CREs can explain expression changes in response to stress.
On the basis of knowledge of transcription factors and CREs,

transcriptional regulatory models in yeast andmammals have been
established that can explain the transcription profiles of different
developmental stages and environmental conditions (10–12). One
approach to building transcriptional regulatory models is to con-
sider the presence or absence of CREs and their combinatorial
relationships, copy number, and/or location relative to their reg-
ulatory targets. Such models, or cis-regulatory codes, have been
applied to explain gene expression in yeast (13, 14), humans (15),
and fruit flies (16). In plants, a number of CREs are known to be

essential for stress-responsive transcription (e.g., refs. 3 and 4).
The importance of a few CRE combinations has also been dem-
onstrated (17–19), indicating that stress-responsive genes are
regulated bymultiple transcription factors. In addition, the roles of
plant CRE copy number and location in transcriptional regulation
of plant stress have also been studied for a few CREs (5, 20–22).
Although these pioneering studies have clearly demonstrated the
existence of stress cis-regulatory codes in plants, there are few
examples and a global description of CRE-based stress regulatory
rules is not available.
To globally decipher cis-regulatory code, detailed knowledge of

CREs is required. However, many experimentally verified (re-
ferred to as “known”) plant CREs in public depositories, such as
the Arabidopsis Gene Regulatory Information Server (23) and
Plant Cis-Acting Regulatory DNA Elements database (24), are
derived frommultiple plant species and some are highly similar or
identical. Furthermore, known plant CREs are mostly available in
the form of consensus sequences with little information on binding
site degeneracy. Thus, to complement our current knowledge of
plant CREs, we first identified putative CREs (pCREs) involved
in stress response through analysis of A. thaliana stress expression
data. We then demonstrated that these pCREs exhibit charac-
teristics of authentic cis-elements. Finally, the presence, combi-
nation, copy number, and location of these pCREs were used to
establish the cis-regulatory code of stress-responsive gene ex-
pression in A. thaliana.

Results and Discussion
Multiple pCREs Implicated in Regulating Abiotic and Biotic Stress-
Responsive Transcription Belong to Two Motif Superfamilies. The
assumption that genes with similar expression patterns are likely
coregulated and have the same CREs has been applied to
identify plant CREs (25, 26). Therefore, we set out to identify
pCREs involved in regulating stress-responsive transcription on
the basis of coexpression patterns of A. thaliana genes under 16
abiotic/biotic stress conditions (SI Methods and Table S1). Each
A. thaliana gene was categorized as up-regulated, down-regu-
lated, or not changed under each condition, and a motif dis-
covery pipeline was used to identify 1,215 pCREs from putative
promoter regions (Fig. 1A, SI Methods, and Dataset S1). The
sites where these pCREs were mapped are preferentially found
in the promoters of stress-responsive genes (up- and/or down-
regulated) compared with promoters of genes without significant
changes under stress (Fig. 1B and Dataset S2 A and B). Among
these pCREs, 346 are highly similar [Pearson’s correlation co-
efficient (PCC) ≥ 0.9] (SI Methods) to 52 known CREs (Dataset
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S2C). To obtain a lower-bound estimate of how many distinct
CREs may be represented by these 1,215 motifs, we collapsed
the pCREs into 250 motif families (Dataset S2D), using a strin-
gent PCC threshold that errs on the side of collapsing truly
distinct motifs into one family. For example, 10% of the mouse
high-mobility group family and 48% of budding yeast transcrip-
tion factor binding sites were collapsed erroneously (SI Methods
and Fig. S1). Among the 250 motif families, 225 (containing 517
pCREs) do not have pCREs that are highly similar (PCC ≥ 0.9)
to known plant CREs. Thus, we have identified hundreds of
motifs that are previously unknown components of plant stress
cis-regulation.
The pCREs enriched among abiotic and biotic responsive genes

form two major clusters, α and β (Fig. 1B, dotted rectangles),
suggesting that many of the pCREs we have identified are spe-
cifically involved in regulating either abiotic or biotic stress
responses. In addition, pCREs within each cluster are more sim-
ilar to each other than to pCREs in different clusters (Fig. 1C).
Thus, abiotic and biotic responses, at least among the conditions
tested, are mostly mediated by distinct α and β “superfamilies” of
CREs and, potentially, distinct families of transcriptional regu-
lators and/or regulatory mechanisms. Consistent with this notion,
in the abiotic stress pCRE superfamily, 19.6% of motifs contain
a core sequence (ACGT) found in the ABRE (3, 4). Likewise,
among pCREs relevant to biotic stress response, 12% have a core
sequence (TTGAC) that is identical to the W-box consensus (27)
bound byWRKY transcription factors. Nonetheless, these related
pCREs have additional conserved signatures flanking the core
sequences and are mapped to overlapping but distinct sets of
stress-responsive genes (Fig. 1 D and E). Thus, pCREs within the

α or the β superfamily are likely involved in regulating distinct but
overlapping sets of target genes and may be bound preferentially
by distinct transcription regulators. This result is consistent with
a study of five WRKY transcription factors that demonstrated
that the positions flanking theW-box core sequence are important
for binding specificity (28).

pCREs Have Properties of Authentic CREs from Plants and Other
Model Systems. Several lines of evidence indicate that the pCREs
identified in this study are authentic. All pCREs were found on
the basis of significant enrichment in the promoters of stress-
responsive genes and many are similar to known CREs. In addi-
tion, may known CREs regulating stress responses are recovered.
There is also a significant positional bias of pCREs (Fig. 2) that is
similar to experimentally established motifs in yeast (29), humans
(30), and plants (31, 32). We found that pCREs are enriched
throughout putative promoter regions of stress-responsive genes,
particularly within ∼300 bp upstream of the transcriptional start
site (TSS) (Fig. 2A). In addition, such pCRE positional bias is, in
large part, observed only for genes responsive to conditions under
which the pCREs were originally identified (Fig. 2B). This loca-
tion bias also holds for pCRE families (Fig. S2). Another char-
acteristic that supports pCRE authenticity is the significantly
higher degree of evolutionary conservation of sites where pCREs
were mapped compared with sites mapped by randomized pCREs
(Fig. 2 C and D). When the degree of conservation was assessed
through a comparison of putative orthologous regions between A.
thaliana, Arabidopsis lyrata, and poplar genomes (SI Methods and
Dataset S2E), 80% of pCREs were found to have significantly
different conservation score distributions from randomized
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Fig. 1. Putative CRE (pCRE) identification pipeline and pCREs relevant to differential gene expression under various stress conditions. (A) pCRE identification
pipeline. P value, Fisher’s exact test; PCC, Pearson’s correlation coefficient; PWM, position weight matrix. (B) pCREs significantly enriched in the promoters of
differentially regulated genes for each condition and treatment duration (latter not labeled). The pCREs were ordered according to results of complete
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The gray areas indicate the correspondence of the α- and β-clusters. (D) Sequence logos of example pCREs and their similarities (PCC) to ABRE (Left and
Middle). IC: information content. (Right) Presence of example pCREs in the promoters of salt-3h up-regulated genes. Each column represents one gene and
whether its promoter contains the pCRE in question (yellow) or not (blue). Only genes containing one or more example pCREs are shown. (E) Sequence logos
and similarities of example pCREs to W-box (Left and Middle). (Right) Presence of example pCRE sites in the promoters of flagellin-1h up-regulated genes.
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pCREs (Mann–Whitney test, P value <1e-5). Our findings are
consistent with the fact that known CREs tend to evolve at a
slower rate compared with functionally neutral sites (33, 34).
To verify pCRE authenticity experimentally, we carried out

promoter deletion studies to determine whether three pCREs
overrepresented among salt-responsive genes were necessary for
salt-induced expression of ANAC019 (At1g52890), an NAC
transcription factor that is significantly up-regulated under high
salinity. Among the pCREs targeted, two are similar to ABRE
(Fig. 3 A and B), and the third is not similar to any known plant
CRE (Fig. 3C). Mutations in any of the three sites resulted in
significant reduction in salt-induced expression (constructs 1–4;
Fig. 3 D and E), indicating that all three pCREs are necessary for
full salt-induced expression. Taken together, the significant en-
richment of pCREs in stress-responsive gene promoters, their
position bias and conservation, and the demonstration that three
pCREs are functional are consistent with our interpretation that
many of these pCREs are likely authentic motifs involved in
controlling stress-responsive transcription.

Presence or Absence of pCREs Can Be Used to Predict Stress-
Responsive Expression. Our current understanding is that the ex-
pression pattern of a gene is influenced not only by the presence of
individual CREs but also by combinatorial controls (13). Com-
putational approaches jointly considering CRE properties and
patterns of gene expression allow the identification of a cis-reg-
ulatory code that stipulates how CREs control gene expression.
To uncover a global plant stress cis-regulatory code, we asked how
well the presence and absence of pCREs explains up-regulation of

genes under a particular stress condition. Initially we focused on
salt stress treatment for 3 h (Salt3). The presence of a CRE will be
a perfect predictor for Salt3-responsive transcription if the re-
sponse is controlled by only one CRE and there is no other level of
regulation. Contrary to this naive scheme, among Salt3-responsive
genes, only 13.9% contain a pCRE (GTCGGTs, reverse com-
plement: wACCGAC) highly similar to the DRE (ACCGAC) in
their promoters. Thus, the recall, i.e., the proportion of truly re-
sponsive genes that were correctly predicted, is 0.139 (Fig. 4A).
On the other hand, among genes containing DREs in their pro-
moters, 16.5% are Salt3 responsive. Therefore, the proportion
of responsive genes that were correctly predicted (precision) is
0.165 (Fig. 4A). Similarly, the precision and recall for an ABRE-
like pCRE (rmSACGTGkmt) for Salt3 response are also low
(Fig. 4A), but still higher than expected by chance; random
guesses of Salt3 response would have a precision of 0.067 because
6.7% of A. thaliana genes are Salt3 responsive (Fig. 4A, dotted
line). Although taking into account the presence of either ABRE
or DRE significantly improves the precision compared with that
of random guesses, other CREs and/or other regulatory mecha-
nisms are apparently necessary to fully explain Salt3 response.
To test whether the inclusion of additional CREs would im-

prove Salt3 response prediction, we first constructed a predictive
model for Salt3 responses on the basis of known plant CREs
with Support Vector Machine (Methods). As shown in Fig. 4A,
considering more known CREs led to marked improvement in
precision and recall. In addition, we observed moderate im-
provement in Salt3 response prediction when pCREs were used
(Fig. 4A). This improvement is expected because pCREs include
previously unknown motifs and are in the form of PWMs that
provide binding site degeneracy information. When we expanded
our analysis to two other conditions, 1-h treatments of UV-B
(UV1) and flagellin (Flg1), we found that known CRE-based
models allow only marginally better predictions than random
CREs (Fig. 4 B and C). However, building UV1 and Flg1 pre-

TSS-500-1000 500

3

0

-1

lo
g 2

(O
bs

R
 /E

xp
B

 )
A

3

2

0

-1lo
g 2

(O
bs

N
R

 /E
xp

B
 )

B

2

1 1

−0.5 0.0 0.5 1.0 1.5 2.0
0

20

40

60

80

100

120

log2(MCS_pCRE/MCS_rpCRE)

Fr
eq

ue
nc

y

D

Conservation score

C

Pr
op

or
tio

n

2

0

0.0 0.3 0.7 1.1 1.5 1.9

pCRE

rpCRE

0.0

0.1

0.2

0.3

0.4

TSS-500-1000 500

Fig. 2. Positional bias and conservation of pCREs. (A) Log ratio (base 2,
y axis) between the number of times that a pCRE is present in promoters
of genes responsive to the condition in question in a 100-bp bin (ObsR, ob-
served responsive) and the number of occurrences of X in random sequences
generated on the basis of the nucleotide composition in the same bin (ExpB,
expected in a bin). The log-ratio value was generated for each pCRE enriched
among genes responsive to a particular condition at a particular time. The x
axis indicates regions up to 1 kb upstream and 500 bp downstream of the
TSS. Black line: the median log ratios for all pCREs. Gray area: the first and
third quartiles of the log-ratio values. (B) Log ratios between the observed
occurrence of pCREs in genes not responsive to any condition (ObsNR, ob-
served nonresponsive) and the expected number of occurrences of pCREs in
random sequences in each location bin. (C) Conservation score distributions
of the sites of an example pCRE (sequence logo shown in Inset; IC, in-
formation content) and its randomized counterpart (rpCRE). (D) Distribution
of log ratios between the median conservation scores (MCS) of pCRE sites
and sites where their randomized counterparts (rpCREs) are located.

1

2

4

5

3

2.0-0.5 0 0.5 1.0 1.5-1.0

-135

-135

-135

-135

TSS

2

1
0

A T G G G T C C C A T
A T G G A A A A G A T

IC

log2(Treatment/control)

A C A C A C G T G T C A
A C A C A A T C A A T A

IC
2

1
0

2

1
0

IC

A B C

D E
-135

A C G T G T G
A A T C A A T

Fig. 3. Experimental verification of the contribution of two pCREs similar to
ABRE and one previously unknown pCRE to ANAC019 salt-responsive tran-
scription. (A) The sequence logo is shown for SamNSmyACGTGkCr, a pCRE
similar to ABRE (Dataset S2). Alignments below the logo indicate the original
and modified (in red) sequences in truncated promoter–β-glucuronidase
fusion constructs. Construct 1: original genomic sequences −135 bp to the
TSS. Constructs 2–5: construct 1 with modified pCRE sites. (B) The sequence
logo and original/modified sequences of ACGTGw, another pCRE similar to
ABRE (Dataset S2). (C) The sequence logo and original/modified sequences
of a previously unknown pCRE, GTGGGNCCCAS. (D) Schematic representa-
tions of five truncated promoter–reporter fusions (not drawn to scale). The
colored and checked boxes indicate the original and modified pCRE sites,
respectively, following the color keys next to the alignments in A, B, and C.
(E) Log-ratio (base 2) boxplots of β-glucuronidase activities between salt-
treated and control samples.

Zou et al. PNAS Early Edition | 3 of 6

PL
A
N
T
BI
O
LO

G
Y



dictive models on the basis of newly identified pCREs led to
significant improvements compared with known motif-based
models (Fig. 4 B and C), lending support to the hypothesis that
pCREs are authentic components of plant cis-regulation. We also
built pCRE family-based models, but they do not perform as well
as models based on individual pCREs (Fig. S2D). Therefore, in-
dividual pCREs likely include more specificity information and
may better resemble authentic cis-elements than pCRE families
that are likely more general descriptions of binding sites.
Our findings indicate that presence and absence of motifs

are important predictors of stress-responsive transcription, and
models based on pCREs in general lead to moderate (Salt3) or

significant (UV1, Flg1) improvement over those built with
known CREs. The rather modest improvement in Salt3 response
prediction with pCRE-based models is likely due to more ex-
tensive knowledge of cis-regulatory mechanisms for salt and re-
lated cold, drought, and osmotic stress conditions (35–37).
Regardless, the models based on motif presence and absence are
clearly insufficient because responses of many genes were not
correctly predicted. In addition, despite the fact that we found
851 pCREs enriched in the promoters of Salt3 up-regulated
genes, only the top 100 ranked pCREs were needed to build
predictive models with similar performances to models built with
all pCREs (Fig. S3). These findings raise the question whether
the lower-ranked pCREs are involved in Salt3 response, if they
play a minor role, potentially as low-affinity sites, or if they are
important only in combinations.

Considering Combinatorial Controls Leads to Further Improvement in
Stress Cis-Regulatory Models. Because condition-specific expres-
sion is likely controlled by one or more transcription factors (13),
we next tested the hypothesis that considering binary pCRE
combinations would further improve the performance of ex-
pression prediction models. Using a classification algorithm that
integrates association rule mining (Methods), 274, 357, and 271
pCRE combinatorial rules with above threshold precision and
recall were identified for Salt3, UV1, and Flg1, respectively
(Dataset S3A). Similar to earlier studies of yeast combinatorial
control (13), some pCREs appear to be hub-like, working in
combination with multiple distinct CREs (Fig. S4). In addition,
predictive models built from these combinatorial rules led to
substantial improvement in stress-response predictions for all
three conditions (Fig. 4 A–C, red line; and Fig. S5A). For ex-
ample, when recall is 20%, the combinatorial rule-based models
led to 25–31% better precision than models based on pCRE
presence or absence.
We emphasize that no single combinatorial rule has >5% re-

call (Dataset S3), indicating that instead of one or a few master
regulatory rules that control the majority of responsive genes,
multiple regulatory rules exist, each controlling a small number
of genes under a stress condition. Consistent with this, distinct
combinations relevant to a stress condition tend to be found in
overlapping but mostly distinct sets of genes (Fig. 5A). A mi-
nority of combinatorial rules is found in similar sets of genes
(Fig. 5 A and B, clusters a–c). Within these small clusters, the
member pCREs tend to be similar to each other (Fig. 5 B and C).
Nonetheless, there is little overlap in putative regulatory targets
between clusters (Fig. 5D). In addition, although combinations
with high similarity tend to contain similar pairs of pCREs (e.g.,
in cluster a, the second, third, and fourth combinations, Fig. 5D),
there are substantial differences in the gene sets to which these
pCREs are mapped.
Supporting the validity of the computational predictions, the

combinatorial rules include the experimentally establishedABRE-
DRE (18) and ABRE-EVENING (19) CRE combinations (Fig.
5C). Furthermore, our experiments confirmed the computationally
predicted combinatorial rule between two ABRE-like pCREs and
a previously unknown pCRE (Fig. 3); mutations in any of these
three pCREs led to significantly lower levels of salt-induced ex-
pression compared with constructs with intact sites (two-sample
t tests, all with P values <0.001). Thus, the results demonstrate the
necessity of the ABRE-like and the unique pCREs in combination
for proper salt-induced expression. Considering the performance
of the combinatorial rule-basedmodels, the identificationof known
combinations, and our proof-of-concept validation experiments, it
is likely many of the combinatorial rules identified in this study are
relevant to the control of stress-responsive transcription.

pCRE Copy Number and Location Are Important but Their Incorpo-
ration Does Not Significantly Improve Model Accuracy. In addition
to presence or absence of and combinatorial relationships be-
tween CREs, motif location (e.g., refs. 13 and 21) as well as copy
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number (e.g., ref. 20) is important for cis-regulatory control. To
assess the importance of motif location, we asked first how well
pCRE-mapped sites in each location bin from −1 kb to the TSS
predict Salt3 response. Note that here we are interested in finding
out how important each location bin is if we considered all pCRE
sites collectively. We found that pCRE sites located from−200 bp
to the TSS have significantly better power to predict Salt3 re-
sponse (Fig. 4D), consistent with pCRE location bias (Fig. 2 A
and B). We next asked which location bins are more important for
predicting Salt3 response for each pCRE. Similar to considering
pCREs in a bin jointly, pCREs located in regions proximal to the
TSS tend to have higher weights (Fig. S5B). However, despite the
importance of motif location, the model incorporating pCRE
location performs similarly to the simpler presence/absence model
[area under receiver–operating characteristic curves (AUC-ROCs)
0.781 and 0.789, respectively].
We next considered the importance of the number of pCRE

sites in predicting Salt3 response (Fig. 4E). Similar to pCRE
location, we found that although the number of pCRE sites is
important, the model based on pCRE copy number does not
outperform the model based solely on pCRE presence or ab-
sence (AUC-ROCs are 0.783 and 0.789, respectively). In addi-
tion to pCRE location and copy number, we also explored
a more complicated model for predicting levels of up-regulation
instead of predicting just up-regulation. We found that more
highly differentially expressed genes are better predicted (Fig.
4F); however, this model does not perform as well as the model
that simply classifies stress responses into up-regulation and no
significant change (Fig. 4A).
In this study, we evaluated model performance by cross-

validation, dividing our data into training and validation sets. We
found that models considering pCRE location, copy number, and
level of differential expression were likely overfitted because these
models do not lead to further improvement in precision and re-
call. These more complicated models may explain the training
data very well but not the validation data. Thus, there are likely
limitations to how much information one can extract from the
expression dataset in building cis-regulatory models. Nonetheless,
our findings highlight the relative importance of combinatorial
regulation compared with other cis-regulatory features; despite

the very large parameter space (large number of possible pCRE
combinations), it still outperforms the model considering motif
numbers, location, or level of expression.

Conclusion
Our studies led to the discovery of 1,215 pCREs with multiple
properties that resemble experimentally identified cis-elements.
In addition, we provided a comprehensive first look at plant
stress cis-regulatory codes on the basis of presence or absence of
pCREs, their combinatorial relationships, locations in putative
promoters, and copy number. Our ability to use pCREs to make
reasonable expression predictions provides additional support
for the notion that the pCREs identified computationally are
likely authentic cis-elements. Furthermore, prediction accuracies
of regulatory models based on binary relationships are much
higher compared with those of presence/absence-based models.
There are very few documented binary interactions between
plant CREs. Thus, the combinatorial rules we have uncovered
provide prioritized targets for experimentation.
Despite the importance of motif location and copy number in

transcriptional regulation, considering these cis-regulatory fea-
tures does not lead to better performing models. Thus, there is
clearly room for improving the stress cis-regulatory model. Aside
from optimizing the parameters of the analysis steps, perfor-
mance would be further improved if additional information
is incorporated, including transcription factor–CRE relations,
transcription factor level, site affinity, or epigenetic states under
stress conditions. For example, it would likely be very informative
to consider information about how the expression patterns of
transcription factors are affected by stress (38) and which tran-
scription factors bind to pCREs on the basis of genome-wide one-
hybrid studies (39). Further iterations of model building consid-
ering the above information in conjunction with experimental
verification will be necessary for a more detailed global stress cis-
regulatory code.

Methods
Putative CRE Identification, Assessing Location Bias, and Conservation. The
overall procedure for identifying pCREs among stress-responsive genes is
shown in Fig. 1A. See SI Methods, section 1 for details on pCRE identification,
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pCRE1 pCRE2 Salt3 Genes with      & without      pCRE1+pCRE2ClustersCombinatorial rules
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Fig. 5. Similarities between Salt3 pCRE combinatorial rules. (A) Pairwise similarity between combinatorial rules. For each rule specifying a pair of pCREs,
a vector was generated consisting of presence (1) and absence (0) of sites of both pCREs in the promoters of Salt3-responsive genes. Using these presence/
absence vectors, pairwise Jaccard similarities (JS) between combinatorial rules were calculated (Methods) and used for hierarchical clustering. The x and y axes
contain pCRE combinatorial rules in the same order. Yellow, a complete overlap between genes containing distinct binary combinations; deep blue, no
overlap. Arrows: example clusters: a, previously unknown element + ABRE-like; b, DRE-like + ABRE-like; c, EVENING element-like + ABRE-like. (B) Jaccard
similarities between combinatorial rules in the example clusters (a, b, and c as indicated in A). The heat maps represent magnified views as in A. (C) The
sequence logos of pCREs found in the example binary combinations. Each row represents one unique pCRE combination in the same order as in B. (D) Genes
with (yellow) and without (blue) a particular binary combination (in the same order as in B). Each column represents the same gene. Only genes with one or
more combinations in cluster a, b, or c are shown.
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pCRE mapping, random sequence generation, and statistical analysis of
positional bias. Dataset S1 contains information on the pCREs identified.
Information on pCREs identified in this study is also available in The Arabi-
dopsis Information Resource (TAIR). To evaluate the conservation of pCREs,
we first identified constrained sites in aligned genomic sequences among
1-to-1-to-1 syntenic orthologs in A. thaliana, A. lyrata, and Populus tricho-
carpa. A pCRE was defined as conserved between species if it mapped
to constrained sites significantly more frequently than its randomly shuffled
counterpart. The constrained sites were identified through comparisons
of observed substitution patterns in each aligned putative promoter site
against a neutral evolution model derived from substitution rates of
fourfold degenerate sites in orthologous coding sequences (SI Methods,
section 1.4).

Building pCRE-Based Models for Predicting Stress-Responsive Transcription. To
determine how well the presence or absence of pCREs explains stress-
responsive transcription, we used the Support Vector Machine (SVM) (40)
algorithm to generate classifiers for predicting expression with twofold
cross-validation. SVM was used to generate expression prediction models
on the basis of (i) only motif (known or pCRE) presence or absence, (ii) pCRE
location, (iii) pCRE copy number, and (iv) levels of differential expression. To
assess the importance of pCRE location, a “weight” that reflects the im-
portance of pCRE sites in a given location bin was calculated (SI Methods,
sections 2.1 and 2.2). The importance of copy number was examined by
comparing the predication model considering only presence or absence of
pCREs against a model based on the copy number of each pCRE (SI Methods,

section 2.3). In prediction models considering levels of differential expres-
sion, high-salinity up-regulated genes were classified into three classes (two-
to three-, three- to six-, and more than sixfold; SI Methods, section 2.4).
Combinations of pCREs that regulate stress response were identified using
an association rule mining method, Classification Based on Associations (41)
(SI Methods, section 2.5). Combinatorial rule information is also available
from TAIR.

Experimental Validation of pCRE and Combinatorial Rules. The β-glucuronidase
(GUS) reporter gene constructs were generated by cloning truncated pro-
moters, both wild-type and mutated variants, into the Gateway cloning vec-
tor PMDC163 (42). Mesophyll protoplasts were isolated from fresh A. thaliana
rosette leaves, and ∼5 × 104 protoplasts were transformed with the constructs
(43). After incubation at room temperature for 13 h under light, the proto-
plasts were evenly divided into two subsamples and treated for 10 min with
water and 250 mM NaCl, respectively. Fluorometric assays of GUS activity
were performed using the fluorogenic substrate 4-methylumbelliferyl glu-
curonide and were normalized with the total protein content (Bio-Rad
Laboratories).
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