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Antibiotics have been administered to agricultural animals for
disease treatment, disease prevention, and growth promotion for
over 50 y. The impact of such antibiotic use on the treatment of
human diseases is hotly debated. We raised pigs in a highly con-
trolled environment, with one portion of the littermates receiving
a diet containing performance-enhancing antibiotics [chlortetracy-
cline, sulfamethazine, and penicillin (known as ASP250)] and the
other portion receiving the same diet but without the antibiotics.
We used phylogenetic, metagenomic, and quantitative PCR-based
approaches to address the impact of antibiotics on the swine gut
microbiota. Bacterial phylotypes shifted after 14 d of antibiotic
treatment, with the medicated pigs showing an increase in Proteo-
bacteria (1–11%) compared with nonmedicated pigs at the same
time point. This shift was driven by an increase in Escherichia coli
populations. Analysis of the metagenomes showed that microbial
functional genes relating to energy production and conversion
were increased in the antibiotic-fed pigs. The results also indicate
that antibiotic resistance genes increased in abundance and diver-
sity in the medicated swine microbiome despite a high background
of resistance genes in nonmedicated swine. Some enriched genes,
such as aminoglycoside O-phosphotransferases, confer resistance
to antibiotics thatwere not administered in this study, demonstrat-
ing the potential for indirect selection of resistance to classes of
antibiotics not fed. The collateral effects of feeding subtherapeutic
doses of antibiotics to agricultural animals are apparent and must
be considered in cost-benefit analyses.
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Antibiotics are the most cost-effective way to maintain or
improve the health and feed efficiency of animals raised with

conventional agricultural techniques (1, 2). In addition to im-
proving feed efficiency, antibiotics are commonly given to live-
stock, poultry, and fish for disease treatment and prevention. The
sum of agricultural antibiotic use reportedly accounts for as much
as half of all antibiotics produced in theUnited States (3). Despite
the clear benefits of antibiotics to agriculture, liberal antibiotic
use combined with rapid and widespread emergence of both an-
imal and human pathogens resistant to multiple antibiotics has
led some to question the prudence of current antibiotic use (4, 5).
Studies of environmental and intestinal microbial communities
reveal enormous diversity of antibiotic resistance genes (6–8).
The addition of antibiotics to feed introduces a selective pressure
that may lead to lasting changes in livestock commensal micro-
organisms. Furthermore, reservoirs of antibiotic resistance genes
have been shown to be stable in bacterial communities, even in
the absence of antibiotics (9–12). A central concern of increased
abundance of antibiotic resistance is the transfer of resistance to
pathogens (13). As a result, the Food and Drug Administration
recently released a draft guidance recommending restrictions on
the use of antibiotics in animal agriculture (14). The Infectious
Diseases Society of America testified before a Congressional
subcommittee in support of such limitations (15).

Bacteria that inhabit the gastrointestinal tract of animals are
important for the maintenance of host health. The intestinal
microbiota assists the host in nutrient extraction, immune system
and epithelium development, and are a natural defense against
pathogens (16). Contrary to these benefits, the gut microbiota
may antagonize future disease treatment by facilitating the dis-
semination of resistance alleles across distantly related organisms.
For example, commensal bacteria of the human colon harbor
antibiotic resistance genes and can transfer these genes to
pathogens (17, 18). In fact, horizontal gene transfer is largely the
cause of multidrug resistance in Gram-negative bacteria (19).
With the identification of antibiotic resistance genes in com-
mensal bacteria in the human food-chain (20–22), the role of the
gut microbiota as a reservoir of resistance genes for animal and
food-borne pathogens needs to be explored.
Valuable insights have been gained by culture- and PCR-based

approaches to study narrow groups of bacteria or genes, such as
erythromycin resistance in swine isolates (23); however, the
comprehensive effects of daily feeding of subtherapeutic doses of
antibiotics on livestock microbiotas have not been studied. We
therefore sought to extensively evaluate the effects of in-feed
antibiotics on the entire gut microbiota. Phylotyping, meta-
genomic, and parallel quantitative PCR (qPCR) approaches were
used to track changes in microbial membership and encoded
functions, enabling the detection of so-called “collateral” effects
of antibiotics (i.e., effects outside of the intended growth pro-
motion and disease prevention). These collateral effects included
increases in Escherichia coli populations and in the abundance of
certain antibiotic resistance genes.
Piglets were birthed at the National Animal Disease Center in

Ames, IA, and housed together in highly-controlled, decontami-
nated rooms to avoid cross contamination among the medicated
animals, nonmedicated animals, and other resident barn animals.
Neither the piglets nor the sow were exposed to antibiotics before
the study. This design was to ensure that the inoculum for the
piglets would come horizontally from their mother, minimizing
variability so that effects of antibiotic treatment could be detec-
ted. At 18 wk of age, one group of littermates received ASP250
feed (medicated) and the other received the same but unamended
feed (nonmedicated) for 3 wk. ASP250 is an antibiotic feed ad-
ditive containing chlortetracycline, sulfamethazine, and penicillin
that is commonly given to swine for the treatment of bacterial
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enteritis and for increased feed efficiency. Fecal samples were
collected just before treatment (day 0), and after 3, 14, and 21 d of
continued treatment. Day 0 samples were used to describe the
swine intestinal microbiome before antibiotic treatment period.

Results
Shifts in Community Membership with ASP250.Wecollected 133,294
sequences of theV3 regionof the 16S rRNAgene froma total of 12
fecal samples. Data from pigs of the same treatment and sampling
date were grouped to appraise an antibiotic effect on community
membership.As reported for amammalian intestinal environment
(24), and recently in a swine metagenome (25), the majority of
classifiable sequences (75–86%) belonged to the Bacteroidetes,
Firmicutes, and Proteobacteria phyla (Table S1). Of the Bacter-
oidetes, the Prevotella genus was consistently abundant, as was
shown to be a feature of the swine microbiome (25). The Bray-
Curtis index was calculated for all sample combinations and an
analysis of similarities (ANOSIM) was performed. A nonmetric
multidimensional scaling (NMDS) plot of these data indicated
divergence of the day 14 samples from theday 0 samples (P< 0.01),
and the medicated microbiome diverged from the nonmedicated
(P < 0.05) (Fig. 1A), demonstrating changes in microbial com-
munity membership over time and with treatment.
Specific changes in the microbial community associated with

ASP250 treatment included a decrease in the abundance of Bac-
teroidetes, along with members of Anaerobacter, Barnesiella, Pap-
illibacter, Sporacetigenium, and Sarcina genera. Members of the
Deinococcus-Thermus and Proteobacteria phyla increased with
ASP250 treatment as well as Succinivibrio and Ruminococcus
genera (Table S1). The increase in Proteobacteria abundance
with in-feed ASP250 was particularly striking: from 1% of the

population in nonmedicated animals to 11% of the population
with antibiotic treatment (Fig. 1B). Specifically,E. coli populations
were the major difference between medicated and nonmedicated
animals, comprising 62% of the Proteobacteria in medicated ani-
mals (Fig. 1C). The increase in E. coli was confirmed in the met-
agenomic data (Fig. 1D) and by qPCR targeting the uidA gene of
E. coli (P < 0.05). A separate study using 12 pigs similarly treated
but with analysis by culture-based techniques further established
that swine fed ASP250 have an increasedE. coli population at 14 d
posttreatment, showing a 20- to 100-fold greaterE. coli abundance
in medicated than nonmedicated swine (Fig. S1).

Shifts in Functional Gene Abundance with ASP250. DNA samples
from the feces of nonmedicated and medicated pigs at days 0 and
14 were isolated, and samples of like treatment and sampling date
were pooled for pyrosequencing. Metagenome sequences
(1,202,058 total) were analyzed in MG-RAST for SEED sub-
systems (26), and in-house for clusters of orthologous groups
(COGs). All metagenomes showed functional stability over time by
both COG and subsystem analyses (Fig. S2). The most abundant
SEED subsystem of known function was carbohydratemetabolism,
mirroring what was previously reported for the swine metagenome
(25). A statistical analysis of COGs revealed shifts in microbial
community functions with ASP250: the medicated metagenome
contained 169 COGs that were significantly more abundant than in
the nonmedicated metagenomes (Table S2). Three COGs (0477,
permeases of the major facilitator superfamily; 1289, predicted
membrane protein; 3570, streptomycin 6-kinase) contain swine
metagenomic genes that are annotated as resistance genes in the
antibiotic resistance gene database (ARDB). Three of the COGs
with the lowest P value (3188, 3539, and 3121) contained genes
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Fig. 1. Shifts in fecal bacterial community membership with antibiotic treatment. (A) NMDS analysis of Bray-Curtis similarity coefficients calculated from 16S
rRNA gene sequence data from individual animals at days 0 and 14 shows the similarity among replicate pig fecal samples. (B) Phylum-level composition of
fecal microbial communities. Data were pooled for a given treatment and time point and are shown as percentage of abundance. (C) Genus-level composition
of Proteobacteria, shown as the total number of sequences (normalized to 50,000 total reads). (D) Predicted genera of COG3188 homologs found in the swine
metagenomes based on BLASTx analysis. COG3188 was overrepresented in the medicated metagenome vs. the nonmedicated metagenomes.
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related to P pilus assembly, and additionally among the statistically
significant COGs are transposases (0675, 1662, and 4644).
To identify themes among differentially represented COGs

between the medicated and nonmedicated metagenomes, COGs
of Table S2 were clustered by their respective COG category. Only
one COG functional category, energy production and conversion
(C), was found more frequently (P < 0.05) in the medicated
metagenome than in the nonmedicated metagenomes (Table S3).

Pervasive Antibiotic Resistance in the Absence of Antibiotic Exposure.
The discovery that resistance-related COGs fluctuated with antibi-
otic treatment led to further scrutiny of themetagenomesbyBLAST
against the ARDB (27). All metagenomes, regardless of antibiotic
treatment, harbored sequences similar to diverse antibiotic re-
sistance genes representing most mechanisms of antibiotic re-
sistance: efflux pumps, antibiotic-modifying enzymes, and modified
orprotected targets of theantibiotic (Fig. 2A).This analysis detected
149 different resistance genes in the day 0 metagenomes.
The finding of diverse fecal antibiotic resistance genes in the

nonmedicatedmetagenomes was supported by parallel qPCR anal-
ysis. A rich array of 57 resistance genes was detected at least once in
the swine fecal samples by qPCR. Samples from nonmedicated
animals showed a total of 50 different resistance genes, but few
were shared between animals: only five [ermA, ermB,mefA, tet(32),
and aadA] were detected in 66% of the samples and none were
found in more than 80% of the samples. No enrichment of these

genes was observed in the medicated animals, even though tet(32),
a ribosomal protection protein, is known to confer resistance to an
administered antibiotic (tetracycline). Samples from medicated
animals yielded more homogenous resistance gene diversity: 38
genes were detected in at least one medicated sample, 19 were
detected in 66% of samples, and 10 [mefA, ermA, ermB, tet(32), tet
(O), aadA, aph(3′)-ib, bcr, acrA, and bacA] were detected in at least
eight of nine of the samples.

qPCR and Metagenomic Analyses Reveal Shifts in Resistance Gene
Richness and Abundance in Medicated Pigs. Statistical analysis of the
ARDB results showed 23 genes to be differentially represented in
themedicated and nonmedicated metagenomes (Table 1). The 20
genes that were more abundant in the medicated metagenome
were associated with efflux, sulfonamide resistance, and amino-
glycoside resistance, the latter of which represents resistance to a
class of antibiotics not present in ASP250 (Table 1).
The qPCR results mirrored the metagenomic analysis, revealing

six resistance-gene types with statistically significantly greater
abundance in the medicated animals than in the nonmedicated
animals (P < 0.05): tetracycline efflux pumps, class A β-lactamases,
sulfonamide resistance genes, aminoglycoside phosphotransfer-
ases, and two types of multidrug efflux (Fig. 2B and Table 1). No
statistical difference in abundance was found for these six re-
sistance gene types between the medicated and nonmedicated
microbiomes on day 0 (Fig. 2B), suggesting that in-feed ASP250
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Fig. 2. Changes in diversity and abundance of antibiotic resistance genes (ARG) in swine feces with antibiotic treatment. (A) Metagenomes were analyzed by
BLASTx against the ARDB, and the number of reads were normalized to 100,000 total reads per metagenome. (B) Differences in the abundance of resistance
genes were assessed by calculating the ratio of resistance gene copy number (ARG) to 16S rRNA gene copy number per sample as detected by qPCR. Columns
denoted by the same letter are not statistically significant (P > 0.05) within each resistance type. Error bars represent the SEM. (C) Bray-Curtis similarity
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pig on day 21. Measures for day 0 samples are not shown.
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caused the effect. Resistance-gene abundance increased most
dramatically in the 3- and 14-d samples (Fig. S3), indicating that
antibiotic treatment induced a rapid shift in the abundance of
resistance genes.
ASP250 treatment increased the diversity of resistance gene

types as detected by qPCR [Shannon indices 1.4 (medicated) and
0.8 (nonmedicated); P = 0.04]. A t test comparing the mean
number of resistance genes in the metagenomes at day 14 to the
corresponding nonmedicated metagenome confirms this result
(P < 0.05). Additionally, the structure of the resistance-gene
communities (β-diversity) was altered by antibiotic treatment, as
determined by a two-way ANOSIM (P < 0.01) of Bray-Curtis
measures; however, the comparison R-value was 0.25, indicating
that the degree of separation is limited. Nevertheless, resistance
gene diversity converges with ASP250 treatment, presumably be-
cause of the selective pressure of the antibiotics (Fig. 2C). Taken
together, these results show that feeding antibiotics increases the
diversity of resistance genes within an individual sample and
homogenizes that diversity between treated samples.

Discussion
We assessed the effect of ASP250 on the swine antibiotic resis-
tome using phylotype, metagenomic, and qPCR approaches. The
results show that the swine microbiome harbors diverse resistance
genes even in the absence of selective pressure. Five genes in
particular were detected at high frequency in both the medicated
and nonmedicated microbiomes. These genes could represent a
core antibiotic resistome for this cohort of swine. Indeed, it was
suggested that tet(32) is abundant in farm animals (28), and our
data support that conclusion for swine. The constant selective
pressure of 50 y of in-feed antibiotics appears to have established
a high background level of resistance in the swine microbiome.
Antibiotic treatment caused a detectable increase in the abun-

dance of resistance genes even above the high background of re-
sistance, and many of these were likely enriched because of direct
interaction with the antibiotics in ASP250. For example, sulfa-

methazine presumably selected for the sulfonamide resistance
genes sul2 or sul1, present in eight of the nine medicated samples.
Additionally, class A β-lactamases were overrepresented in the
medicated animals and confer resistance by cleaving such β-lactam
antibiotics as penicillin. Many of the other enriched resistance
genes function by exporting chemicals. Such efflux includes but is
not limited to antibiotics and may allow bacteria that lack specific
resistance genes to survive antibiotic pressure. Multidrug efflux is
frequently associated with the medically alarming issue of multi-
ple-drug resistance and can be found on mobile genetic elements
(29). In addition to the effects on specific gene families, in-feed
antibiotics homogenized the richness of resistance genes among
individuals over time. The breadth of the current study enabled
the visualization of this intriguing phenomenon despite the tre-
mendous resistance gene heterogeneity across samples.
One type of resistance, the aminoglycoside O-phosphotrans-

ferases, increased in abundance with in-feed ASP250, although
they do no confer resistance to the antibiotics therein. This
finding suggests an indirect mechanism of selection, perhaps by
co-occurrence on mobile elements conferring resistance to
ASP250 antibiotics. Ten of the 13 phosphotransferases identified
in the medicated swine metagenome are homologous (7 of 10
have 100% amino acid identity) with the streptomycin phospho-
transferase on the pO86A1 plasmid in E. coli O86:H- (accession
number YP_788126). Resistance genes aggregate on plasmids in
response to selective pressure (30), and pO86A1 carries at least
two other resistance genes (accession number NC_008460). This
congregation of resistance genes onmobile genetic elements could
offer a fitness advantage to a bacterium living in the constant
presence of antibiotics. However, this would be an undesirable
collateral effect of in-feed antibiotics because these resistance gene
clusters could be transferred to E. coli or other potential human
pathogens in the swine gut or in the agriculture environment.
Regardless of the mechanisms of selection, the results show that
antibiotic use increased the abundance of resistance genes specific
to and beyond the administered antibiotics from a diverse pool of

Table 1. Antibiotic resistance genes differentially represented (P < 0.05) in the medicated vs. nonmedicated pig fecal samples as
detected by metagenomics [number of sequences in the medicated (n = 1) vs. nonmedicated (n = 3) metagenomes per resistance gene]
and qPCR (gene copy number/16S rRNA gene copy number) during the treatment period

Mechanism of resistance

Gene(s) detected by

Confers resistance toMetagenomics qPCR

More prevalent in the treated metagenome
ABC transporter system. Macrolide-
lincosamide-streptogramin B efflux pump.

lmrA Lincomycin

Aminoglycoside O-phosphotransferase.
Modifies aminoglycosides by
phosphorylation.

aph(3′′)-Ib, aph(6′)-Ic,
aph(6′)-Id

aph(3′′)-Ib Streptomycin

Class A β-lactamase. Cleaves the β-lactam ring. blaTEM-1, blaSHV-2 β-Lactams
Major facilitator superfamily transporter,
tetracycline efflux pump. Multidrug
resistance efflux pump.

emrD, mdfA, mdtH, mdtL,
rosA, tet(B)

tet(B), bcr Chloramphenicol, tetracycline,
deoxycholate, fosfomycin,
Florfenicol, sulfathiazole

Resistance-nodulation-cell division
transporter system. Multidrug resistance
efflux pump.

adeA, amrB, mdtF, mdtN,
mdtO, mdtP, oprA, tolC

acrA Fluoramphenicol, aminoglycoside,
macrolide, acriflavine, doxorubicin,
erythromycin, puromycin,
β-lactams

Ribosomal protection protein. Protects
ribosome from inhibition by tetracycline.

tet(M) tet(O) Tetracycline

Sulfonamide-resistant dihydropteroate
synthase. Cannot be inhibited by
sulfonamide.

sul2 sul2 Sulfonamide

More prevalent in the control metagenomes
Resistance-nodulation-cell division
transporter system. Multidrug resistance
efflux pump.

mexF Chloramphenicol, fluoroquinolone

Ribosomal protection protein. Protects
ribosome from inhibition by tetracycline.

tetB(P), tet(Q) Tetracycline
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background resistance genes in the swine microbiome, and that
this increase was detectable even above a high background of
resistance-gene diversity.
The collateral effects of antibiotics extend beyond influencing

resistance genes. Statistical analysis of COGs in the swine meta-
genomes showed that genes encoding virulence, gene-transfer,
and energy production and conversion functions are selected by
in-feed antibiotics. Specifically overrepresented COGs included
some relating to P pilus assembly; the P pilus has been described
for attachment and virulence in E. coli (31). Additional COGs of
interest in the medicated metagenome included transposases,
which are known to participate in the transfer of antibiotic re-
sistance genes (32). These functions could enhance the stability
and spread of resistance genes in microbial communities. Addi-
tionally, an increase in the abundance of genes encoding energy
production and conversion functions could be a factor in growth-
promoting properties of at least some antibiotics, but further
experiments are required to test this. Antibiotics are thought to
improve feed efficiency in agricultural animals primarily by de-
creasing the bacterial load, which is beneficial to the host by re-
ducing competition for nutrients and decreasing the host’s cost of
responding to themicrobes (2). Analysis of the swine metabolome
after antibiotic treatment showed an effect on various bio-
synthetic pathways, including sugar, fatty acid, bile acid, and
steroid hormone synthesis (33). COGs may therefore be useful
signposts for identifying microbes and functions important to the
performance-enhancing effects of antibiotics like ASP250.
Changes in microbial functions result from changes in microbial

membership, and interesting membership shifts were detected.
The decrease in Bacteroidetes in the treated animals may relate to
the growth-promoting benefits obtained from feeding swine
ASP250 as part of their diets. Obese mice have lower levels of
Bacteroidetes relative to Firmicutes in their feces compared with
lean mice (34). The obese mice have improved energy-harvesting
capacity, presumably because of this shift, and perhaps this shift is
related to improved feed conversion in swine. In addition, an in-
crease in E. coli prevalence in response to oral antibiotic treatment
has been reported for amoxicillin, metronidazole, and bismuth
(35), metronidazole (36), and vancomycin and imipenem (37) in
the mammalian gut microbiota. However, amoxicillin plus the
β-lactamase inhibitor clavulanic acid administered both in the feed
and intramuscularly resulted in decreased E. coli in pigs (38), and
oral ciprofloxacin yielded decreased Proteobacteria populations in
humans during treatment (39). These results are an important
reminder of the varying collateral effects of different antibiotics.
E. coli are both commensal and pathogenic inhabitants of mam-
malian gastrointestinal tracts; an increase in E. coli could be
beneficial or harmful, either to the host or to the food chain.
Additionally, increased E. coli populations associated with exces-
sive weight gain in pregnant women (40) is an unfavorable result
in this host but parallels a potential growth-promoting role for this
bacterium in livestock. The cost and benefit of a given antibiotic
for a desired outcome must therefore be carefully weighed.
Differences among the rarer members of the microbial commu-

nities between treatment and control animals are less understood
and invite further investigation. Of those that increased with
treatment, members of the Deinococcus-Thermus phylum are
known for being resistant to environmental stress; these organisms
have only recently been identified in the human gut (41). In addi-
tion, Ruminococcus spp. are common in ruminants and are fre-
quently found in the hindgut of pigs (42). Adept at degrading
cellulose, an increase in Ruminococcus spp. after antibiotic treat-
ment may aid in feed conversion in swine. Taken together, the data
suggest numerous possibilities for how the swine gut microbiota
might be involved with the improved feed efficiency afforded by
certain in-feed antibiotics.

Conclusions
The results show that even a low, short-term dose of in-feed
antibiotics increases the abundance and diversity of antibiotic
resistance genes, including resistance to antibiotics not adminis-

tered, and increases the abundance of E. coli, a potential human
pathogen. Additionally, analysis of the metagenomes implicated
functions potentially involved with improved feed efficiency. The
study design featured environmental control in a single uniform
inoculum source (the mother), control of the host genetics, no
exposure of the sow or piglets to antibiotics except for the treat-
ment, and identical diet except for the inclusion of ASP250 in one
group. Future studies should include other in-feed antibiotics,
multiple litters of swine with robust replication, and the identifi-
cation of the antibiotic-inducedmechanisms that lead to increased
feed efficiency. Implications of antibiotic resistance on human and
animal health need to be taken into account when discussing ag-
ricultural management policies and evaluating alternatives to
traditional antibiotics. With the use of antibiotics in animal agri-
culture at a crossroads, studies like this and others that highlight
the collateral effects of antibiotic use are needed.

Materials and Methods
Full protocols are available in SI Materials and Methods.

Swine. Six pigs (siblings) were used in this study andwere split into two groups
of three: a group to receive antibiotics and a group to receive no antibiotics.
Animals were raised in accordance with National Animal Disease Center
Animal Care and Use Committee guidelines. The rooms housing the pigs were
decontaminated before the beginning of the study. A pregnant sow was
obtained from a hog farm at which she had no prior exposure to antibiotics.
The piglets shared a pen with the sow for 3 wk after birth; her feces were
therefore the primary bacterial inocula for the piglets. After weaning, all pigs
were fed the same diet (TechStart 17–25; Kent Feeds) until the start of the
study, at which point the medicated pigs were moved to a new clean room
and given the above diet but containing ASP250 (chlortetracycline 100 g/ton,
sulfamethazine 100 g/ton, penicillin 50 g/ton). Freshly voided feces was col-
lected from nonmedicated and medicated animals just before treatment
(medicated and nonmedicated day 0) and 3, 14 and 21 d after treatment.

DNA Sequencing. Fecal DNA was isolated by bead-beating, and the V3 region
of the 16S rRNA gene was amplified and sequenced. PCR products were
sequenced on a 454 Genome Sequencer FLX, using the manufacturer’s
protocol for FLX chemistry (Roche Diagnostics). For sequencing the meta-
genome, DNA from the feces was pooled by treatment group (non-
medicated, medicated) for each time point (day 0, day 14). Day 14 samples
were sequenced using FLX chemistry and day 0 samples were sequenced
using Titanium chemistry (Roche Diagnostics).

Phylotype Analysis. Only sequences longer than 50 bpwereused for phylotype
analysis (phylotyping), which totaled 133,294 sequences (70,667 unique
sequences) from 12 fecal samples. After binning the samples by barcode,
phylogenetic analysis and taxonomic assignments of the V3 portion of the 16S
rRNA gene were made using the Ribosomal Database project Web tools (43).
Additional phylotype comparisons and hypothesis testing were performed
with the softwarepackagemothur (44). Bray-Curtis similarity coefficientswere
calculated from16S rRNAgene sequence data from individual animals at 0 and
14dandplotted inanNMDSgraph to showthe similarity among samples.MDS
plots and analysis of similarities statistical tests were done in PAST (45).

Metagenomic Analysis. Sequences were dereplicated and analyzed by BLAST
against the nonredundant database and ARDB (27). The BLAST reports were
parsed to extract COG information, and COG frequencies were analyzed in
ShotgunFunctionalizeR (46). TheARDBwas kindly providedby Liu andPop (27) so
that we could perform BLASTx analyses locally. In both analyses, differences with
P < 0.05 were significant, and the significant COGs were labeled with their re-
spective COG category to visualize trends. For ecological analyses, the number of
hits was normalized to 100,000 submitted reads and analyzed using NMDS and
cluster analyses with the Bray-Curtis similarity measurement in PAST (45).

Quantitative PCR. Primer setsweregrouped into18 resistance typesby subjecting
all primer sets to the ARDB BLAST tool (Table S4) or by the BLAST tool in the
National Center for Biotechnology Informationwhenno resultswereobtainedby
theARDBBLAST (Table S5).Quantitative PCRprimers, reagents, andDNAsamples
were loaded into six subarrays of OpenArray plates (Applied Biosystems) (47). For
each 33 nL qPCR reaction, 1 ng of extracted DNA was added as template.
Quantitative PCR reagents and conditions were preformed as previously de-
scribed (47). Relative gene copy numbers were calculated as follows: gene copy
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number = 10(26−Ct)/(10/3), where Ct equals the threshold cycle (Table S6). Amplifi-
cation curves were manually inspected using quality control measures. The
abundance of the 16S rRNA gene was determined (48), and E. coli was quanti-
fied by using a uidA primer set (49). Copy numbers of the uidA and 16S rRNA
genes were calculated in relation to a standard curve, which was generated by
using 10-fold dilutions of 108 to 100 copies as template, in triplicate reactions.
Those reactions targeting 16S rRNA and uidAwere preformed separately from
the OpenArray platform.

Statistical Analysis of qPCR Results: Abundance and Diversity. All qPCR data
were normalized between samples by dividing the gene copy number by 16S
rRNAcopynumberandsubsequentlynatural log-transformedtoachievenormal
distribution. A repeated-measures ANOVA model was used to determine if
treatment or time was significantly related to the abundance of antibiotic re-
sistance genes and Shannon diversity in different samples. The best covariance
structureoftheresiduals foreachresponsevariablewasdeterminedandusedfor
repeated measures ANOVA testing (SAS v9.2; SAS Institute). A Bonferroni ad-
justment was not used in the comparison of resistance genes or resistance gene

types because of excessive reduction in power of tests; therefore, the reported P
values were not corrected for multiple comparisons.

Shannon diversity was calculated using PAST ver. 1.87 (45) using data
normalized between samples (resistance gene copy number/16S rRNA gene
copy number). Bray-Curtis coefficients were calculated for each of the
samples using the natural log-transformed data (50). A two-way ANOSIM
was calculated using these data, considering treatment and time as the two
factors. Two-way ANOSIM analysis and NMDS plots were completed using
the Bray-Curtis measure for β-diversity.
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DNA Extractions. Feces were processed as follows for phylotype and
metagenomic analysis. Ten grams of fresh feces per sample were
collected and blended in 300mL sterile PBS. After suspension, the
feces were centrifuged at 250 × g for 5 min to remove the large
particles (such as insoluble food) from the sample. The superna-
tant was retained and centrifuged at 10,000 × g for 30 min at 4 °C
to pellet the bacterial cells. The supernatant was poured off and
the pellet was washed by suspending it in PBS and spinning it
again at 10,000 × g for 30 min at 4 °C. Two grams of the washed
pellet was used for DNA extractions using the Power Max Soil
DNA Isolation Kit following the manufacturer’s protocol (MO
BIO Laboratories). DNA samples were quantified on a Nanodrop
ND-1000 UV-Vis spectrophotometer (Nanodrop Technologies).
DNA integrity was determined by gel electrophoresis. Extracted
DNA was stored at −20 °C.

16S rRNA Gene Amplification.Amplification of the V1-V3 region of
bacterial 16S rRNA genes was carried out with the conserved
primers 8F (5′-AGAGTTTGATCCTGGCTCAG) (1) and 518R
(5′-ATTACCGCGGCTGCTGG) (2) with attached unique eight-
nucleotide sequence barcodes (3). The V3 region was chosen
because it was shown to be highly informative (4). PCR reactions
contained 200 μM of each deoxyribonucleotide triphosphate,
2.0 μM of each primer, 2.0 U Ampligold Taq polymerase (Ap-
plied Biosystems), 2.5 mM MgCl2, 50 ng template DNA, Am-
pligold Taq buffer (Applied Biosystems), and water to 50 μL.
PCRs were performed in a PTC-225 thermal cycler (MJ Re-
search) with the following protocol: 3 min at 95 °C, 21 cycles of
(1 min at 95 °C, 30 s at 56 °C, 45 s 72 °C), and a final elongation
step for 3 min at 72 °C. PCR products were separated by gel
electrophoresis and purified using MinElute kit (Qiagen).

Metagenomic Analysis. Sequence replicate artifacts were removed
using a local version of the 454 Replicate Filter (5) and specifying
a sequence identity cutoff of 0.9, a length difference requirement
of 0, and a check for a three-base identical sequence at the be-
ginning of each cluster. The clustered sequences were assigned
to clusters of orthologous groups (COGs) by using BLASTx to
compare the nucleic acid sequences to the database of proteins
that was originally used to identify COGs. The BLAST reports
were parsed to extract COG information, and COG frequencies
were calculated and tabulated using SAS (SAS Institute). COG
frequencies were subsequently analyzed in ShotgunFunctional-
izeR (6) using the testGeneFamilies.dircomp function and
Poisson group statistics to perform gene-centric analysis between
two groups [nonmedicated (n = 3) and medicated (n = 1) swine
metagenomes]. Differences with P < 0.05 were significant, and
the significant COGs were labeled with their respective COG
category to visualize trends. Metagenomic sequences belonging
to select significantly different COGs were analyzed to infer
phylogeny. Phylogeny assignments were made by extracting se-
quences belonging to the COGs of interest, BLASTx comparison
of those sequences to the GenBank nonredundant protein da-
tabase, extraction of the top-hit accession, and retrieval of the
phylogeny for that accession. COG counts were also corrected
for differences in the estimated average genome size of each
metagenome and reanalyzed as above, invoking the eff.nseq
adjustment using the testGeneFamilies2.dircomp function (7).
Because different methods of average genome size calculations
could affect the outcome, COG counts were also corrected with
the average genome sizes that were calculated by GAAS (8).

These adjustments did not dramatically affect the results, and
therefore only the results of the original ShotgunFunctionalizeR
calculations are reported.
Swine metagenomes were also examined for the presence of

known antibiotic resistance genes. MG-RAST (9) was used to bin
sequences by subsystems. In addition, sequences were locally
analyzed by BLASTx comparison of the sequences against the
Antibiotic Resistance Gene Database (ARDB) (10), which was
kindly provided by the ARDB authors. The BLASTx parameters
were optimized for short reads and diversity by using a bitscore
cutoff of ≥60 and an identity cutoff of 35%. Antibiotic resistance
gene-centric analysis was carried out in R using the testGene-
Families function as described above. Differences with P < 0.05
were significant. For ecological analyses, the number of hits was
normalized to 100,000 submitted reads and analyzed using
multidimensional scaling (MDS) and cluster analyses with the
Bray-Curtis similarity measurement in PAST (11).

Design of Primers for Quantitative PCR Targeting Antibiotic Resis-
tance Genes in Biotrove Array. Antibiotic resistance-gene refer-
ence sequences were collected using: (i) the Antibiotic Resistance
Genes Online database, which contained 555 β-lactamase and
115 vancomycin resistance-gene sequences at the time of collec-
tion (12); (ii) a National Center for Biotechnology Information
(NCBI) search for resistance-gene sequences; and (iii) literature
search. Reference sequence protein IDs were used as seeds to
harvest all closely related alleles from GenBank using the Fun-
Gene pipeline and repository (FGPR) (http://fungene.cme.msu.
edu/index.spr). Aligned sequences from the FGPR were used to
create consensus sequences using BioEdit (13). Primer sets were
designed from consensus sequences and then selected or rejected
following criteria previously described (14). Overall, 174 antibi-
otic resistance genes were targeted with 272 primer sets designed
from 5,241 sequences. Primer sets were grouped into 18 re-
sistance types by subjecting all primer sets to the ARDB (10)
BLAST tool (Table S4), or by the BLAST tool in the NCBI when
no results were obtained by the ARDB BLAST (Table S5).
Abundance of the resistance type was the sum of individual genes
within the resistance type. Antibiotic resistance gene categories
used to group the results include (family: type): beta-lactamase:
(i) class A, (ii) class B, and (iii) class C; tetracycline resistance:
(iv) ribosome protection protein and (v) tetracycline efflux; (vi)
sulfonamide resistance; macrolide-lincosamide-streptogramin B
resistance: (vii) erm rRNA methylases, (viii) ATP-binding
transporters, (ix) major facilitator family transporters, (x) hy-
drolases, and (xi) transferases; aminoglycoside resistance: (xii)
acetylation, (xiii) adenylylation, and (xiv) phosphorylation; mul-
tidrug transporters: (xv) multidrug and toxic compound extrusion
family, (xvi) major facilitator superfamily transporter, (xvii) re-
sistance-nodulation-cell division transporter, and (xviii) small
multidrug resistance transporter.

Validation of the BioTrove System for Quantitative PCR of Antibiotic
Resistance Genes.Randomly-selected genes were tested in parallel
with published PCR primers that target the same gene (Table S6).
If no amplification curve was observed using the previously pub-
lished primer set or if the threshold cycle was high (greater than
35), the results were confirmed further by running the quantita-
tive PCR (qPCR) product on a 1% agarose gel and confirming
presence or absence of the gene by visualization of a band of the
correct length.
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Validation of the BioTrove Antibiotic Resistance Genes Primer Set.
Results obtained using the BioTrove platform were validated
by probing samples in parallel with primers that were previously
published. Antibiotic resistance genes were randomly selected for
this validation insofar as a published qPCRprimer set using SYBR
as thedye could beobtained. Sampleswere probed by qPCRand in
some cases by traditional PCR and gel imaging. The result
obtained using the BioTrove platformwas considered “true” if the
previously published primer set confirmed the result. In validation
of the results, in total, there were 29 instances of true positives, 46
instances of true negatives, 2 instances of false-positives, and 7
instances of false-negatives; these results translate to an 89%
success rate, which we consider satisfactory. We used strict in-
terpretation of the PCR to determine if the BioTrove platform
result was accurate or not. For example, three of the false-nega-
tive instances resulted in a very faint band on a gel, or a high

threshold cycle (14). It is possible that the BioTrove primers did
not fail in these instances but is simply less sensitive than other
PCR reactions because of the small reaction volume. We also
observed that some of the BioTrove individual primer sets may be
much more broad than previously published primer sets.

Culturing Escherichia coli. The antibiotic feed trial was repeated
with an independent set of pigs. Twelve pigs (offspring from three
sows) were housed and maintained as described above. Six pigs
received antibiotics (ASP250) and six receive no antibiotics
continuously for 21 d before being sampled.
E. coli was cultured from fresh pig intestinal contents at nec-

ropsy, from both medicated and nonmedicated animals, after
21 d of feed. Serial dilutions were plated on MacConkey plates
with lactose and incubated overnight at 39 °C. Colony forming
units were enumerated for each animal (Fig. S2).
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Fig. S1. E. coli enumerations from swine gut contents in a repeated ASP250 study. E. coli was cultured on MacConkey’s agar from fresh gut contents from
both medicated and nonmedicated animals after 21 d of feed. Wide black horizontal bars show the average colony forming units per treatment group, which
are significantly different (P = 0.04).
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Fig. S2. Microbial functions encoded by the swine metagenomes. (A) COGs in the metagenomes. The following COGs were less than 0.02% of the total
number of COGs per metagenome and therefore cannot be visualized on the graph: A, RNA processing and modification; B, chromatin structure and dynamics;
W, extracellular structures; Y, nuclear structure; Z, cytoskeleton. (B) SEED subsystems in the metagenomes.
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Fig. S3. Tetracycline efflux abundance trends for each treatment animal. This is a representative figure; similar trends were observed for each of the six
treatment-enriched gene types. Black lines are medicated animals and gray dashed lines are nonmedicated animals.
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