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Abstract

If short sellers can destroy firm value by manipulating prices down, an informed
blockholder has a powerful natural incentive to protect the value of his stake by
trading against them. However, he also has a potentially conflicting incentive to use
his information to generate trading profits. We show that a speculator can exploit
this conflict and force the blockholder to buy a disproportionately large amount
to prevent value destruction. This is costly for the blockholder because the trades
must sometimes be executed at inflated prices. Given reasonable constraints on short
sellers, a sufficiently large blockholder will have the incentive to absorb these losses
and prevent a bear raid. However, conditions exist under which outside intervention
may be warranted.
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1 Introduction

Despite academic arguments that short selling improves market efficiency, many believe it is

harmful and should be constrained. Their argument is often predicated on the belief that exces-

sive stock price declines due to targeted short selling can make existing (or potential) creditors

or other counterparties lose confidence in a firm and stop dealing with it. Thus, the damage is

caused not so much by the initial drop in stock price, but through its feedback effect on the real

decisions of the firm’s counterparties, since that not only amplifies the firm’s price drop but also

makes it more permanent. 1

Consistent with this reasoning, George Soros (2009) blames the demise of Lehman Brothers and

American International Group on self-validating bear raids involving aggressive short selling of

the firms’ common stock. He claims that “the mispricing of financial instruments can affect the

fundamentals that market prices are supposed to reflect.” The Securities and Exchange Commis-

sion’s defense of its 2008 short sales ban emphasized this same mechanism: “financial institutions

are particularly vulnerable to [price declines due to short selling]...because they depend on the

confidence of their trading counterparties in the conduct of their core business.” Similar argu-

ments form the basis for recent bans on short selling of bank stocks by some European Union

countries. Exploitation of this feedback from prices to fundamentals has also been blamed for

destructive price declines of many non-financial companies such as Overstock.com, an internet

retailer, and Sedona Corp., a software company. 2

1 Several recent papers consider how this type of reverse causality may give rise to manipulation,
including Khanna and Sonti (2004), Attari, Banerjee, and Noe (2006), and Goldstein and Guembel
(2008). See pp. 4–6 for a complete discussion.
2 In court filings, Overstock.com blames naked short sellers for “wrongfully, knowingly and intention-
ally act[ing] to interfere with and destroy or harm Overstock’s existing and/or prospective business
relationships” (Overstock.com, 2007). Similarly, Drummond (2006) quotes Sedona CEO David Vey as
saying that stock declines due to naked short selling “make it difficult to attract new investors and
capital and leaves potential customers wary.”
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In this paper we argue that this concern over manipulative short selling has overlooked the

potentially critical role of blockholders who maintain long positions in the firms’ stock. If there

is reason to believe that short sellers may induce bad decisions by manipulating prices down,

a blockholder has a powerful natural incentive to prevent such manipulation by buying enough

shares to keep prices high. Thus, private markets should be able to handle value-destroying

attempts by speculators without outside help.

We investigate this hypothesis with a model that includes a firm with an informed blockholder,

a counterparty with a risk-averse 3 decision maker, and an uninformed speculator. The risk-

neutral blockholder receives a signal about the value of a relationship between the firm and the

counterparty, and can credibly convey his information to the counterparty’s decision maker only

through trading. The decision maker decides whether to accept the relationship based on the

observed price. This gives the blockholder two objectives for his trading strategy—to ensure an

efficient decision, and/or to use his information to maximize trading profits.

Since the decision maker is risk averse, inducing an efficient decision sometimes requires pushing

prices to artificially high levels. In particular, when the blockholder’s signal indicates a relation-

ship of medium expected profitability he would like to have the relationship accepted, but the

risk-averse decision maker may choose to reject. To prevent such a rejection the blockholder has

an incentive to trade in a manner that suggests his signal is stronger. He can accomplish this in

equilibrium if his trade after a medium signal is “pooled” with his trade after a high signal, so

that the decision maker cannot distinguish between the signals.

However, this results in a conflict between the blockholder’s two objectives. For the pooling

strategy to be supportable in equilibrium, the blockholder must not have the incentive to deviate

(or “separate”) by trading a larger quantity after a high signal to increase trading profits, or

3 An agency problem such as a private benefit or private cost for the decision maker would also suffice
in place of risk aversion.
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by trading a smaller quantity after a medium signal to avoid trading losses. Preventing the

former requires a large enough pooled trade size so that equilibrium trading profits exceed

those attainable with a larger trade. Preventing the latter requires a large enough block size

to overcome the blockholder’s reluctance to incur trading losses. Thus, if the blockholding is

insufficient, the relationship may be rejected after a medium signal even though it is positive-

NPV in expectation, causing an efficiency loss.

We next show that in this setting even an uninformed speculator can sometimes implement

a profitable trading strategy by exacerbating the blockholder’s internal conflict. The strategy

involves arriving with a hidden initial position, and then (optimally) trading in the direction of

that position. Since the main tension in the model is whether certain positive-NPV relationships

will be lost, when the speculator arrives short, she wants to force prices down to induce rejection

of these relationships (“raid” them), and thus sells. When she arrives long, she instead wants to

raise prices to help ensure their acceptance, and thus buys.

This strategy makes it much harder for the blockholder to achieve efficiency because the specu-

lator’s actions make both of the deviations described above easier to hide and more profitable.

This increases the size of the pooled trade needed to prevent separation with a high signal,

while also increasing the size of the block needed to prevent separation with a medium signal.

These two reinforcing effects lead to a disproportionate increase in the block size needed to

ensure efficiency relative to the size of the speculator’s trades. The identification of this friction

between pooling to ensure efficiency and separating to maximize trading profits, as well as the

speculator’s ability to exacerbate this friction and cause a disproportionate increase in the block

size needed, are some of the major contributions of our paper.

We assume the ability to short sell is exogenously constrained, so the increase in required block

size due to the speculator’s presence is measured relative to these constraints. Thus, given

reasonable constraints, our analysis implies that blockholders should prevent value destruction
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much of the time. However, outside intervention may be justified if short selling constraints

become unexpectedly relaxed or in times of crisis when counterparties are likely more risk averse

and blockholders less able to counter. 4 Importantly, though, we also find that the block size

needed to ensure efficiency decreases in the extent of potential damage from a bear raid, both

because it is more important to do so, and, surprisingly, because it is less costly to do so. The

latter occurs because the increase in potential damage corresponds to an increase in expected

value given a medium signal, which decreases the spread between that value and the pooled

price and consequently reduces the required trading losses. Thus, the market has some ability

to self-correct against the more excessive abuses of short selling.

We also show that bear raids are more likely to succeed in destroying value when blockholders’

information is more precise, and when there are multiple informed blockholders who are un-

able to coordinate and do not individually hold large enough stakes. Both results are somewhat

counterintuitive. The former occurs because extra precision increases potential trading profits,

causing the blockholder to focus more on trading profits than on efficiency. The latter occurs

because each independent blockholder faces the same trading incentives as does a single block-

holder, and must trade just as aggressively at undesirable prices to ensure efficiency. Thus, each

informed blockholder must hold a stake as large as that required for a single blockholder, and

splitting up a block will leave each individual blockholder with insufficient stakes to prevent

bear raids.

Our paper is directly related to Goldstein and Guembel (2008), who similarly model a short seller

manipulating prices to induce bad decisions. However, unlike our paper, they do not consider

the actions of other parties who may have an incentive to work against such a speculator.

Furthermore, they require that the speculator sometimes be informed about firm fundamentals,

while we do not. In our setting, it is the blockholder who is informed, and the decision maker

4 In such cases, potential remedies lie also in incentivizing blockholders to increase their positions.
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tries to infer the blockholder’s information from prices that depend on his trade. Thus, decisions

are sensitive to prices, which enables the speculator to affect decisions despite being uninformed.

In addition, since the speculator starts with a non-zero position, she has an incentive to induce

decisions that improve the value of her position even if she expects a loss from trading against

the informed blockholder.

The existing literature on blockholders in corporate governance has established that there may

be too little intervention when blockholdings are small because the costs are borne individually

while the benefits are shared widely. While our paper fits within this general framework, we

believe we are the first to consider how a blockholder’s conflicted objectives toward the use

of his private information can lead to profitable opportunities for manipulation by a strategic

speculator. Furthermore, in our setting blockholders govern exclusively through trading, and the

cost of governance is endogenously determined through the extent of trading losses or foregone

trading profits. This unique interaction of the costs and benefits of governance inside the trading

mechanism leads to the novel result of a disproportionate increase in the block size necessary

for efficiency when the speculator is active.

The channel we identify for blockholder governance differs in important ways from those in

the existing literature. The traditional channel is direct intervention in firm decision making,

i.e., “voice” (see Shleifer and Vishny, 1986; Burkart, Gromb, and Panunzi, 1997; Bolton and

von Thadden, 1998; Maug, 1998; Kahn and Winton, 1998; Faure-Grimaud and Gromb, 2004).

This assumes the blockholder holds the necessary control rights to intervene directly. In our

setting, the blockholder does not need control rights since he governs through his trades. Some

other papers suggest that blockholders improve decisions by directly providing information to

decision makers (see Cohn and Rajan, 2012; Edmans, 2011). Unlike our paper, this requires that

the information be credibly communicable.
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Others show that blockholders can, as here, govern through trading. Admati and Pfleiderer

(2009), Edmans (2009), and Edmans and Manso (2011) show that the threat of informed selling,

or “exit,” can improve stock price informativeness and encourage correct actions by managers.

These papers rely on blockholders being more informed than other traders, which is shown by

Edmans (2009) to arise from short selling restrictions. Thus, the blockholder’s significance would

diminish with a relaxation of short sale constraints. In our setting, however, the blockholder’s

significance is greater when short selling constraints are relaxed, since this increases the manipu-

lation problem the blockholder tries to counter. Furthermore, in the “exit” papers blockholders

trade only to maximize trading profits and the governance effect is a by-product, while here

they explicitly trade off the two objectives.

Governance via trading is also studied by Khanna and Sonti (2004), who show that informed

blockholders may manipulate prices upwards to influence managers to accept good projects and

increase firm value; and by Attari, Banerjee, and Noe (2006), who show that institutional in-

vestors may strategically “dump” shares to induce activists to buy and then intervene directly

in the firm’s management. As is true in our setting, the blockholders in these papers are moti-

vated both by trading profits and by the desire to protect the value of their existing positions.

However, neither paper considers the presence of a speculator who may actively disrupt the flow

of information.

Our paper is also related to earlier analyses of the feedback effect from market prices to fun-

damentals like in Leland (1992), Khanna, Slezak, and Bradley (1994), Dow and Gorton (1997),

Subrahmanyam and Titman (2001), and Ozdenoren and Yuan (2008). 5 In these papers, like

here, price levels can induce firm or counterparty decisions that affect fundamental values. How-

5 Also see, e.g., Durnev, Morck, and Yeung (2004), Luo (2005), Sunder (2004), Bakke and Whited
(2010), Chen, Goldstein, and Jiang (2007), and Edmans, Goldstein, and Jiang (2011) for empirical
evidence.
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ever, these papers do not consider the possibility that market participants may manipulate prices

to achieve desired outcomes.

A number of papers in the academic literature find that restrictions on short sellers tend to

degrade market quality, and sometimes cause firms to be overvalued (see, e.g., Boehmer, Jones,

and Zhang, 2009; Jones and Lamont, 2002; and Asquith and Meulbroek, 1996). 6 The latter

finding is consistent with models of differences in beliefs, such as Miller (1977), but are at

variance with Diamond and Verrecchia (1987), which argues that prices should be unbiased

since markets will adjust for the truncated bad news. Duffie, Garleanu, and Pedersen (2002)

suggest that overpricing may simply reflect the presence of lending fees.

Finally, our analysis is related to the general literature on manipulation. For example, Bagnoli

and Lipman (1996) and Vila (1989) both study manipulation involving direct actions such as a

takeover bid. Manipulation based on price pressure or information alone has also been studied

widely, such as by Jarrow (1992), Allen and Gale (1992), and Chakraborty and Yilmaz (2004).

The paper proceeds as follows. The base model is specified in Section 2. The equilibria of the

base model are characterized in Section 3. In Section 4 we endogenize the speculator’s initial

position. In Section 5 we consider an extension with multiple blockholders. Comparative statics

and empirical implications are discussed in Section 6. Section 7 concludes. All proofs can be

found in the Appendix.

2 The base model

We consider an economy with a single firm that has many indivisible equity shares outstanding.

A decision maker (D) must decide whether to accept or reject a (new or existing) counterparty

6 On the other hand, Kaplan, Moskowitz, and Sensoy (2010) study an exogenous shock to the supply
of lendable shares for a random group of firms and find that there is very little effect on pricing or
market quality.
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relationship with the firm. Firm value is $1 per share if D rejects the relationship. If D accepts,

d ∈ (0, 1) per share is added to firm value if the future state of nature, Θ ∈ {B,G}, is good

(Θ = G), while d − ε per share, where ε ∈ (0, d), is subtracted from firm value if the state

of nature is bad (Θ = B). The ex ante probability of Θ = G is 1
2
. This framework easily

extends to situations where rejection of a counterparty relationship causes the firm to fail. The

interpretation then is that the value upon failure is $1 per share, and acceptance and hence

continuation is efficient in the good state but not in the bad state.

There are (potentially) two strategic traders in the model: a risk-neutral, long-term investor, I,

who possesses private information about the future state, and a risk-neutral speculator, S, who

is uninformed about the state. I enters the game with a long position in the stock equal to i ≥ 1,

which is consistent with the empirical regulatory that firms often have one or more long-term

blockholders (see Holderness, 2009). With regard to S’s presence we consider two specific cases,

one with the speculator (the “active speculator” case) and another without (the “no speculator”

case). In each case the speculator’s presence (or lack thereof) is common knowledge. Looking

at the two cases allows us to compare regimes with and without speculation to determine

the efficiency impact of the speculator’s actions. The no speculator case could correspond, for

example, to a regulatory regime in which short selling is prohibited. In the active speculator

case, S arrives with a privately known exogenous position that is long or short s ≥ 1 shares

with equal probability. We later endogenize the initial position of the speculator by adding an

earlier trading round, and verify that the speculator’s overall strategy can be profitable. 7

7 However, the model with an exogenous position for S remains useful in that it captures important
scenarios where a speculator holds an effective position in a firm without ever having traded in its
stock. For example, the speculator may hold a position in the securities of a competitor or potential
acquirer (generally an effective short interest), or a supplier or customer (generally an effective long
interest). Kalay and Pant (2008) discuss many such possible “correlated” long and short positions that
occur without direct trading in the firm’s shares.
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In the base model there is a single trading round. Before trading takes place, I receives a signal,

θ ∈ {L,M,H}, about the future state of nature, where H is high, M is medium, and L is low.

The probability structure of the signals is such that

• Pr[θ = H|Θ = G] = Pr[θ = L|Θ = B] = λ,

• Pr[θ = H|Θ = B] = Pr[θ = L|Θ = G] = 1
2
− λ, and

• Pr[θ = M ] = 1
2

We assume λ ∈ (1
4
, 1
2
) so that the H and L signals are informative in the correct direction (i.e.,

an H signal implies a higher probability of the good state). With an M signal, I is effectively

uninformed. No other agents receive any signals regarding the state, and the only way for I to

communicate his information to D is through his trading strategy. 8 While our assumption that

I receives a private signal but D does not is standard in the feedback literature, all we require

is that I have access to some information that is incremental to D’s.

During the trading round, with probability 1
2

a noise trader places a market order to buy one

share and with probability 1
2

it places an order to sell one share. I can place a market order

for any integer quantity. S can place a market order to buy or sell one share, or can choose not

to trade. This limit on the speculator’s trades captures real-life contraints on short selling. 9

Limiting the speculator’s trades endogenously determines how much I will choose to trade in

equilibrium, implying that the interpretation of our results should always be relative. So if over

8 It is natural to ask whether direct communication is a superior solution. However, in our model the
blockholder does not want to fully reveal his information either to the market or to D because of both
his incentive to make trading profits and his incentive to get the right decision made. Furthermore,
since the decision maker resides outside the firm, and the single decision maker we model may actually
represent numerous such agents across different counterparties, a direct communication mechanism
may be infeasible in practice. Our assumption is also consistent with the existing feedback literature,
which assumes that direct communication is not possible.
9 Note that it is easy to show that S’s willingness to buy additional shares is endogenously limited
by the extent of her long position. However, the short sale limit is a binding one—a short speculator
would often wish to sell additional shares if she could. A number of empirical papers show that short
selling is more expensive and more constrained than taking long positions (see, e.g., D’Avolio, 2002;
and Geczy, Musto, and Reed, 2002).

9



some range of I’s initial position i the speculator’s actions are shown to reduce efficiency, we can

say only that this is the case for such i measured relative to the existing limits on short sales.

While for analytical simplicity we do not formally restrict I from any level of short selling, it

turns out that it is never necessary for I to sell more than two shares in any of the equilibria

we derive. Thus, he never needs to sell more than one share short, and there is no effective

asymmetry in the two players’ ability to short sell.

After the players place their orders, a risk-neutral market maker sees only the net order flow,

Q, and then prices the trades at the risk-neutral expected value given his inference about I’s

signal from observing Q, as in Kyle (1985). We represent this price as p(Q). We assume that

the market maker holds sufficient inventory to satisfy any relevant pattern of trades.

Next, D makes his accept/reject decision based on any information he can learn from the stock

price, given that he knows the game being played. The risk-neutral I would like D to accept as

long as the posterior probably of the good state is at least d−ε
2d−ε <

1
2
. However, we assume that

D is risk averse to the extent that he will accept only if his posterior is that the probability

of the good state is at least π, where π ∈ (1
2
, 1
3

+ 2
3
λ] captures the severity of the agency

problem. 10 The reasons for these specific bounds on π are discussed later where appropriate.

Since D is an individual, while his decision impacts firm value, we assume his overall utility is

negligible relative to that of the risk-neutral shareholders of the firm. Thus, we always measure

the efficiency of the decision from the point of view of the shareholders. 11

10 As noted previously, the same effect could be captured by private benefits or private costs for the
decision maker. Also, the qualitative results of the model would be similar in the absence of any agency
problem, though the analysis is less tractable. Further details are available upon request.
11 We do not consider how any surplus arising from the relationship is divided between the firm and the
counterparty on whose behalf D makes the relationship decision. Our measure of efficiency remains valid
as long as a valuable relationship for the firm does not create losses for the owners of the counterparty.
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After the decision is made, the state of nature and resulting firm value are realized. Finally, all

stock positions are closed out—long positions are paid the firm value per share, and those with

short positions must pay the firm value per share.

3 Equilibrium

For the base model we consider only sequential equilibria with pure trading strategies. 12 We also

require that the posterior beliefs of D and the market maker about the probability of the good

state be weakly increasing (monotonic) in net order flow (including those order flows that do

not occur in equilibrium). 13 Where multiple equilibria may exist, we focus on the most efficient

ones, i.e., those where firm value is maximized because the relationship is correctly accepted

with the greatest probability.

Given that an M signal is received with the same probability in the good and bad states, it

is uninformative. Thus, I’s posterior after receiving an M signal is the same as the prior: a

1
2

probability of the good state. Since ε > 0, an acceptance is efficient given this posterior.

However, given the lower bound on π specified above, this is insufficient to convince D to accept

the relationship. Note that this therefore justifies the assumed lower bound of π as D’s risk

aversion would be irrelevant if we had π ≤ 1
2
.

12 Mixed trading strategies are necessary only when we extend the model to an earlier trading round
to show that it is rational for the speculator to follow the strategy we derive. See Section 4 for details.
13 This assumption rules out “perverse” equilibria, such as those in which I buys more shares after
observing an L signal than after observing an H signal, which would mean that prices would actually
decrease in net order flow over some range. Such equilibria are possible only because of the discrete
nature of our modeling assumptions. Other signaling models that use similar monotonicity assumptions
to refine the equilibrium set include Bikhchandani (1992), Gul and Sonnenschein (1988), and Swinkels
(1999).
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The posterior after observing an H signal, using Bayes’ rule, is

Pr[Θ = G|θ = H] =
Pr[θ = H|Θ = G]

Pr[θ = H|Θ = G] + Pr[θ = H|Θ = B]
=

λ

λ+ (1
2
− λ)

= 2λ >
1

2
. (1)

Similarly, the posterior after observing an L signal is

Pr[Θ = G|θ = L] =
Pr[θ = L|Θ = G]

Pr[θ = L|Θ = G] + Pr[θ = L|Θ = B]
=

1
2
− λ

(1
2
− λ) + λ

= 1− 2λ <
1

2
. (2)

We assume

VL ≡ 1 + (1− 2λ)d− 2λ(d− ε) < 1, (3)

that is, acceptance is inefficient given an L signal. Thus, from I’s point of view, a fully efficient

equilibrium is one in which D always accepts after an H or M signal, but never after an L.

It is useful to define other values analogously as follows:

VM ≡ 1 +
1

2
d− 1

2
(d− ε) = 1 +

1

2
ε (4)

is expected firm value per share if the decision maker accepts when θ = M ; and

VH ≡ 1 + 2λd− (1− 2λ)(d− ε) (5)

is expected firm value per share if D accepts when θ = H. Finally, note that if an agent’s

posterior is that there is a 1
3

chance the signal is H and a 2
3

chance the signal is M, then the

posterior probability of the good state is

1

3
(2λ) +

2

3

(
1

2

)
=

1

3
+

2

3
λ. (6)
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This corresponds to the maximum of the specified range for π, and thus is always sufficient for

acceptance. We define

VP ≡ 1 +
(

1

3
+

2

3
λ
)
d−

(
2

3
− 2

3
λ
)

(d− ε) (7)

as the expected firm value per share with an acceptance given that posterior.

We next introduce notation for the posterior beliefs of the market maker and D for different

net order flows. In equilibrium, it does not matter whether D observes the net order flow or

just the price (the one is as good as the other in terms of inferring signal probabilities), so we

assume without loss of generality that he can observe the net order flow. As such, the two agents’

posterior beliefs are always equivalent. Let Q = qS + qI + qN denote the realized net order flow

given trading quantities of qS for the speculator (if she arrives), qI for the blockholder, and qN

for the noise trader. Throughout, for each possible equilibrium we also use the notation qHI , qMI ,

and qLI for I’s equilibrium signal-contingent trades. We denote the posterior belief about the

probability of state G given Q as µ(Q).

3.1 Efficient equilibria

Now consider the necessary characteristics of a fully efficient equilibrium, in which D always

accepts after an H or M signal and always rejects after an L. The following requirements are

immediate (proofs not in the text are in the Appendix).

Lemma 1 Any fully efficient pure strategy equilibrium must be such that I plays the same

strategy after M and H signals (qMI = qHI ), and plays a sufficiently different strategy after an L

signal so that no possible net order flows following that trade could arise from his equilibrium

trade after an M or H signal.
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If these conditions are violated, then there must be equilibrium order flows where the efficient

decision is not taken. If I plays different pure strategies after H and M signals (qMI 6= qHI ), then

some order flows can occur only following an M, and D concludes upon seeing those order flows

that the signal cannot be H and rejects due to his risk aversion (i.e., µ(Q) < 1
2
< π at those

order flows). Similarly, if I plays a strategy after an L signal where the resulting order flow can

also follow an M or H, when that order flow occurs either D sometimes accepts after an L (if

the relative probability of an H signal is high enough) or sometimes rejects after an M or H.

We next determine when such fully efficient equilibria exist for both the no speculator and the

active speculator cases. In the active speculator case, the speculator’s incentive is to trade in

the direction of her initial position, i.e., to buy if long and sell if short. This is because the main

tension in the model is whether D will accept after an M signal, and since the relationship is

positive-NPV the speculator would like to have it accepted if long (and so buys) and rejected if

short (and so sells). Thus, as an additional equilibrium selection criterion (along with monotonic-

ity of beliefs and choosing the most efficient available equilibria), we focus on equilibria where

the speculator buys a share if initially long and sells a share if initially short. This allows us to

focus on the most interesting cases, where the speculator’s scope for disruption is maximized.

For the no speculator case, consider the class of potential equilibria where I trades a quantity

qMI = qHI = q+I after an M or H signal, and trades qLI ≤ q+I −3 after an L signal. The L trade needs

to differ by at least three shares so that after a buy from the noise trader it cannot be confused

with an M or H signal trade with a sell from the noise trader. The possible equilibrium order

flows after an M or H signal are Q ∈ {q+I −1, q+I +1}, which occur with equal probaility from I’s

perspective. After an L signal they are Q ∈ {qLI + 1, qLI − 1}, again with equal probability. This

class of equilibria represents all possible pure strategy fully efficient equilibria in the no speculator

case given our condition that beliefs must be monotonic in order flow (i.e., qLI ≤ qMI ≤ qHI must

hold in equilibrium).
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The structure of this type of equilibrium, with qLI = q+I − 3, is illustrated in Fig. 1, which shows

the prescribed trading quantities for the different signals, the possible resulting net order flows

at the ends of the arrows (with probabilities along the arrows determined by the noise trader’s

buying or selling one share with equal probability), and the resulting equilibrium (and assumed

out-of-equilibrium) prices described below. Equilibrium order flows and prices are in bold italics,

and out of equilibrium quantities are in normal text.
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Fig. 1. Proposed equilibrium orders for I, resulting net order flows, and prices in the no speculator case.
Arrows represent the noise trader’s random purchase or sale of one share. VH equals expected firm value
when D accepts and the signal is H, while VP equals expected firm value when D accepts and the H and
M signals are pooled. Equilibrium order flows and prices are in bold italics, while out-of-equilibrium
quantities are in normal text.

To understand the prices given in the figure, note that any order flow that can follow an L

signal, i.e., Q ∈ {q+I − 4, q+I − 2}, results in the belief that the signal was L, which leads to

rejection and a value of one. Using Bayes’ Rule, any order flow that can follow an M or H, i.e.,

Q ∈ {q+I −1, q+I +1}, results in the belief that there is a 1
3

probability that the signal was H, and a

2
3

probability it was M. 14 The posterior is thus 1
3

+ 2
3
λ, which leads D to accept since π ≤ 1

3
+ 2

3
λ

14 To see this, note that I receives an M signal with unconditional probability 1
2 , and an H signal

with unconditional probability 1
4 (the state is good with probability 1

2 leading to an H signal with
probability λ, and the state is bad with probability 1

2 leading to an H signal with probability 1
2 − λ, so

the unconditional probability of an H signal equals 1
2λ + 1

2

(
1
2 − λ

)
= 1

4). Thus, when D believes that
I is pooling after M and H signals and he observes a corresponding order flow, he concludes that the

signal was H with probability
1
4

1
4
+ 1

2

= 1
3 .
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(note that this also justifies the upper end of the allowed range for π—if it were higher, even

full pooling between M and H signals would be insufficient for acceptance). Since the market

maker believes that D will accept, and has the same posterior belief about the probability of the

good state, he sets the price at p(Q) = VP for such order flows. Two of the off-equilibrium prices

shown (at order flows of q+I and q+I −3) are pinned down by our assumption of monotonic beliefs,

while the price of VH at q+I + 2, reflecting the belief that the signal is H for all order flows at or

above q+I + 2, turns out to be the most effective assumption for preventing upward deviations

by I following an H signal. Similarly, setting a belief that the signal is L at all lower order flows,

resulting in a price of one, is the most effective assumption for preventing downward deviations

by I after an M signal. Since upward deviations after an H and downward deviations after an

M are the hardest deviations to prevent, this set of off-equilibrium prices ensures existence over

the largest possible parameter space.

Now consider the blockholder’s expected trading profits. After an M signal I knows that the

expected per share value is actually VM if D accepts, so he expects to take a loss equal to

q+I (VM − VP ). On the other hand, after an H signal he expects a gain equal to q+I (VH − VP ).

These trading gains and losses lead to a friction between pooling and separating that makes it

difficult to sustain fully efficient equilibria. First, following an M signal I may not be willing to

suffer the trading losses at the pooled price, so may deviate downward to a smaller trade. This

will cause a loss with respect to the value of his initial position, i, since an efficient acceptance

becomes less likely, but will save (at least some of) the potential trading loss. This type of

deviation will be more likely the smaller is his initial position i, i.e., the less I cares about the

ultimate firm value. On the other hand, I may want to deviate upward from the pooled quantity

in order to increase his trading gains following an H signal. The size of his initial position is

less of an issue here since D always accepts at higher order flows (so I need not worry about an

inefficient decision if he deviates upward).
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The latter effect results in a minimum quantity that the blockholder will accept as an equilibrium

pooled trade after an H signal. To see this, consider a deviation trade of q+I + 2, which turns

out to be the most profitable deviation. If the noise trader buys, the resulting order flow is

q+I + 3, which reveals the H signal and results in zero trading profit. If the noise trader sells,

the order flow is q+I + 1, the deviation is hidden, and the blockholder gets trading profits of

(q+I + 2)(VH − VP ). Since the relationship is accepted either way, the blockholder will deviate if

1
2
(q+I + 2)(VH − VP ) > q+I (VH − VP ) =⇒ q+I < 2.

This minimum trading quantity creates a problem for the blockholder when his signal is M,

because with q+I = +2, he must take equilibrium trading losses of 2(VM−VP ). His best deviation

in this case would be to not trade, which saves these losses but causes rejection 1
2

of the time

when the noise trader sells. That would reduce the value of his stake from iVM to i(1
2
VM + 1

2
),

so this deviation is profitable if iVM + 2(VM −VP ) < i(1
2
VM + 1

2
) =⇒ i < 4(VP−VM )

VM−1
. Thus, when

this condition holds, there is inefficiency due to the loss of some positive-NPV relationships even

in the absence of the speculator.

Next consider the active speculator case. To understand the role that the speculator plays, note

that she effectively adds strategic “noise” to the system, as only she knows her starting position

and thus how she will trade. This has several effects. First of all, it means that I will have to

spread his signal-contingent trades wider in order to fully separate his L signal trade from his

M and H signal trade. In other words, I will either have to sell more after an L, buy more after

an M or H, or both. Second, the additional uncertainty impacts both of the deviation incentives

described above in a way that makes fully efficient equilibria harder to support. In particular,

it makes both downward deviations after an M signal and upward deviations after an H signal

more profitable because the deviations become harder to detect.

To see this, consider the class of equilibria where I trades qI = q+I after an M or H signal

(as above), but now trades qI = qLI ≤ q+I − 5 after an L signal to ensure full separation. The
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difference required for separation increases to five shares because the speculator’s trades expand

the range of “noise” from two to four shares (the net “noise” trade is now +2, 0, or -2 shares

with respective probabilities 1
4
, 1

2
, and 1

4
). The proposed equilibrium is illustrated in Fig. 2,

assuming qLI = q+I − 5. Again, equilibrium quantities are in bold italics, and out-of-equilibrium

quantities are in normal text. Out-of-equilibrium beliefs (and prices) are either pinned down by

our monotonicity assumption, or, as above, set to the extreme highs for higher order flows or

extreme lows for lower order flows. As with the no speculator case, this class of equilibria is the

only possible class of pure strategy fully efficient equilibria in the active speculator case.
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Fig. 2. Proposed equilibrium orders for I, resulting net order flows, and prices in the active speculator
case. Arrows represent the net effect of the noise trader’s and speculator’s random purchase or sale of
one share each. VH equals expected firm value when D accepts and the signal is H, while VP equals
expected firm value when D accepts and the H and M signals are pooled. Equilibrium order flows and
prices are in bold italics, while out-of-equilibrium quantities are in normal text.

To see why it is harder to sustain such equilibria, note that if the blockholder deviates up by two

shares after an H signal, the deviation will be detected only with probability 1
4

(when the order

flow is q+I + 4), leaving trading profits with probability 3
4
. This makes the deviation significantly

more profitable, implying a disproportionately higher required trade, as seen in the condition

for profitable deviation: 3
4
(q+I + 2)(VH − VP ) > q+I (VH − VP ) =⇒ q+I < 6. But at a trade size of
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+6, the blockholder must take larger losses after an M signal, so deviations will again be more

profitable. For instance, if he deviates down to a trade of +4, his deviation will be detected

and the relationship rejected with only 1
4

probability, but he will reduce his trading losses. This

deviation is profitable if i(3
4
VM + 1

4
) + 3

4
4(VM − VP ) > iVM + 6(VM − VP ) =⇒ i < 12(VP−VM )

VM−1
.

Note that the block size necessary with the speculator is three times larger than that required

with no speculator, even though the speculator trades only one share.

Checking all other possible deviations (see the Appendix), yields the following result.

Theorem 1 In the no speculator case, a fully efficient equilibrium in which qHI = qMI ≥ 2,

qLI ≤ qMI − 3, and D accepts the relationship iff Q ≥ qMI − 1, exists if i > i∗N = 4(VP−VM )
VM−1

.

Otherwise, no fully efficient equilibria exist.

In the active speculator case, a fully efficient equilibrium in which qHI = qMI ≥ 6, qLI ≤ qMI −5,

S buys one share if long and sells one share if short, and D accepts the relationship iff Q ≥ qMI −2,

exists if i > i∗S = 12(VP−VM )
VM−1

. Otherwise, no fully efficient equilibria exist.

Finally, we clearly have i∗S > i∗N .

This result implies that there is a large range of stake sizes for which no fully efficient equilibria

exist with an active speculator, but do exist without. Thus, the actions of the speculator are

likely to reduce efficiency in this region.

However, in the range where full efficiency exists, an active speculator has no impact on the

decision maker. Thus, it is straightforward to show that, while an active trading strategy in a

fully efficient equilibrium can be incentive-compatible for the speculator, it will not generate

any profit. It will be incentive-compatible because, from the speculator’s perspective, all of her

trades are at zero profit or zero loss. The only other possible source of profit is an increase in

the value of her initial position, but in a fully efficient equilibrium her presence does not affect

overall firm value, so no profit occurs. To determine whether the speculator will ever profit from
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actively trading, we need to determine what type of equilibria may exist over ranges without

fully efficient equilibria, and whether any such equilibria support profitable speculation.

3.2 Partial pooling equilibria

We continue the strategy of first determining the most efficient possible equilibrium, and then

checking for its existence. One possible class of equilibria is one in which the H signal is fully

separated from the M and L signals. In fact, there are always equilibria where I trades a large

positive amount after an H signal, and trades amounts after M or L signals that fully separate

them from the trade following an H. 15 However, there are some intermediate equilibria that

are both more efficient and allow for potential profits for the speculator. In particular, we

characterize the existence of pure strategy “partial pooling” equilibria in which D always accepts

after an H, never accepts after an L, and sometimes accepts after an M.

For now assume again that I is always willing to separate after an L signal to ensure a rejection

(verified in the Appendix). In order to have an equilibrium where D sometimes accepts after an

M, I’s trades after M and H signals must be separated by a multiple of two, with the smaller

trade following the M signal. If that were not the case, then the resulting order flows could never

coincide because the strategy would always result in odd net order flows after one signal, and

even net order flows after the other. For the no speculator case, overlap is possible only with a

2-share difference, so the only possible partial pooling equilibrium is one in which I trades two

fewer shares after an M signal than after an H. In this case, we have the following result.

15 This results in acceptance only after an H signal, so the equilibrium trades after M and L signals
do not matter either for relationship outcomes or for trading profits as long as the resulting net order
flows cannot overlap with those following an H. Some of these equilibria thus have the M and L signals
separated from each other, and some do not. Since there is no trading gain or loss after M or L signals
in equilibrium (the price is always correctly p(Q) = 1), existence of these equilibria depends on the
blockholder’s stake being small enough relative to the trade following an H signal so that I will not try
to deviate up after an M signal.
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Proposition 2 Assume the speculator is not active. Then for all i ≤ i∗N , a partial pooling

equilibrium exists in which qMI ≥ 0, qHI = qMI + 2, qLI < qMI − 1, and D accepts the relationship

iff Q ≥ qMI + 1.

Now consider the active speculator case. We continue to focus on equilibria in which the specula-

tor buys if initially long and sells if initially short. The conditions under which this is optimal for

the derived equilibria are given in the proof of Theorem 3 in the Appendix. For the remainder of

the paper, we focus on the part of the parameter space where the relevant incentive-compatibility

constraints can be satisfied by an initial position for the speculator of magnitude s = 1, as this

is the interesting part of the parameter space when noise trade has magnitude 1. 16

With an active speculator, there are two possible partial pooling equilibria, one with a 2-share

difference and one with a 4-share difference between the trades after M and H signals. It turns

out that whether a 4-share difference or a 2-share difference is more efficient depends on the value

of π, i.e., the extent of D’s risk aversion. This is because the outcomes in an equilibrium with

a 2-share difference depend on which of two ranges π falls into. Fig. 3 provides an illustration

of I’s trades in such an equilbrium after M and H signals, with resulting possible order flows

and posterior beliefs. Note that if π ∈ (2
5

+ 2
5
λ, 1

3
+ 2

3
λ], the relationship will be rejected at the

node where the order flow is qMI because the posterior is insufficient. Thus, the relationship is

accepted with probability 3
4

after an H signal, and with probability 1
4

after an M (i.e., only if

both the speculator and noise trader buy so that Q = qMI + 2). However, if π ∈ (1
2
, 2
5

+ 2
5
λ], D

will accept at all order flows that can follow an H signal (i.e., all Q ≥ qMI ), so this equilibrium

has acceptance with probability 1 after an H signal and with probability 3
4

after an M.

The efficiency of an equilibrium with a 4-share difference, on the other hand, is not affected by

the exact level of risk aversion. Since net order flows following an H and M signal overlap only at

16 Technically, this parameter restriction corresponds to the assumption that 2(VP−VM )
VM−1 < 1 when

π ∈ (25 + 2
5λ,

1
3 + 2

3λ], and
27
10

(VP−VM )

VM−1 < 1 when π ∈ (12 ,
2
5 + 2

5λ].
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Fig. 3. Equilibrium orders, resulting net order flows, and posterior beliefs for a partial pooling equilib-
rium with a 2-share difference. Arrows represent the net effect of the noise trader’s and speculator’s
random purchase or sale of one share each. The parameter λ ∈ (14 ,

1
2) measures the informativeness of

I’s signal.

one node (after an H signal when both S and the noise trader sell, and after an M signal when

both S and the noise trader buy), and the posterior at that order flow is 1
3

+ 2
3
λ, the relationship

is accepted at that node for any allowed π. Thus, in such an equilibrium the relationship is

always accepted after an H signal and is accepted with probability 1
4

after an M. This is more

efficient that the 2-share equilibrium when risk aversion is in the higher range, but less efficient

when risk aversion is in the lower range. The following result establishes the existence of the

corresponding “most efficient” partial pooling equilibrium for each range of π.

Theorem 3 Assume π ∈ (2
5

+ 2
5
λ, 1

3
+ 2

3
λ]. Then for all i ∈

[
1, i∗S

]
a partial pooling equilibrium

exists in which qMI ≥ 1, qHI = qMI + 4, qLI < qMI , S buys one share if long and sells one share if

short, and D accepts the relationship iff Q ≥ qMI +2. The speculator’s strategy entails an expected

trading loss of 1
4
(VP −VM), but is profitable in expectation because it increases the expected value

of her initial position by 1
8
s(VM − 1) > 1

4
(VP − VM).

Assume π ∈ (1
2
, 2
5

+ 2
5
λ]. Then for all i ∈

[
1, i∗S

]
a partial pooling equilibrium exists in which

qMI ≥ 1, qHI = qMI + 2, qLI < qMI − 2, S buys one share if long and sells one share if short, and D
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accepts the relationship iff Q ≥ qMI . The speculator’s strategy entails an expected trading loss of

27
80

(VP −VM), but is profitable in expectation because it increases the expected value of her initial

position by 1
8
s(VM − 1) > 27

80
(VP − VM).

It turns out that these partial pooling equilibria give the speculator an opportunity to profit

from manipulation. Since S is uninformed about the future state, she cannot generate trading

profits. Thus, in order to have a profitable strategy she must influence the firm’s real value so

that she realizes a gain on her initial position. In the above equilibria, the speculator knows that

if she sells and the signal is M, D is more likely to reject. However, if she buys, D is more likely to

accept. This wedge gives her the incentive to trade in the direction of her original position since

she can cause an inefficient rejection (if she is short and sells) or make an efficient acceptance

more likely (if she is long and buys), leading to an increase in the value of her initial position in

either case.

However, the trade itself will take place at a loss. Consider what can happen when the speculator

sells in a partial pooling equilibrium with a 4-share difference. On the one hand, the signal may

be M or L, so D will reject and the price will be p(Q) = 1, the correct price. On the other

hand, the signal may be H. If the noise trader buys, this offsets S’s sell trade and the price is,

correctly, VH . If the noise trader sells, this reinforces S’s trade and the price is VP which is too

low from S’s perspective since she can infer from the net order flow that the signal must be H.

Thus, S sells at too low of a price and faces an expected trading loss. A similar argument shows

that if S buys she will either do so at zero trading profit, or at a trading loss due to buying at

too high of a price, VP , since S can infer that I’s signal is M. Similar logic holds for her trades

in an equilibrium with a 2-share difference.

This implies that in order for active speculation to be incentive-compatible (and profitable),

the speculator must have a sufficiently large initial position so that the gain on that position

will overcome the potential trading losses. As noted above, we have focused on the part of the
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parameter space where a position of magnitude s = 1 is sufficient for this purpose. Thus, for this

part of the parameter space the result confirms that active speculation can be profitable even

for an otherwise uninformed speculator who has accumulated a “secret” long or short position

in the stock, or an effective long or short position through holdings in correlated instruments

such as the securities of a competitor, supplier, customer, or counterparty.

3.3 Efficiency implications

The results thus far imply that a speculator’s presence can reduce efficiency by causing an

inefficient rejection by D. An informed long-term blockholder can prevent this loss, but at an

endogenous cost that cannot be justified when his own initial position is not sufficiently large.

These results are summarized in Fig. 4 below, which plots the corresponding “most efficient”

equilibrium as a function of I’s initial position i.

The rightward arrow in each panel of the figure represents increasing values of I’s initial position,

i. The labeled values correspond to the thresholds from Theorem 1. For values of i above i∗S, a

fully efficient equilibrium exists with or without the speculator. For values of i from i∗N to i∗S,

a fully efficient equilibrium exists without the speculator, while the most efficient equilibrium in

that range with an active speculator is a partial pooling equilibrium in which D accepts either

1
4

or 3
4

of the time after an M signal. Thus, positive-NPV relationships are rejected some of the

time. Also, in this range an active speculator can make profits if her initial position is at least

one share, since her trading activity can induce inefficient decisions.

Furthermore, the most efficient partial pooling equilibrium with an active speculator given π >

2
5

+ 2
5
λ (which has acceptance after an M signal 1

4
of the time) is less efficient than the most

efficient one that exists given π < 2
5

+ 2
5
λ (which has acceptance after an M signal 3

4
of the time).

Thus, greater risk aversion on the part of the decision maker leads to greater efficiency loss.
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Fig. 4. Equilibrium map showing the most efficient equilibrium as a function of I’s stake size.

When i is between one and i∗N , the most efficient equilibrium both with and without the

speculator is a partial pooling equilibrium. As expected, for most of the parameter space the

speculator’s actions result in a reduction in the maximum attainable firm value. 17 Recall that

these results are best interpreted in relative terms since, for the model so far, we have restricted

the speculator to trading at most one share. In particular, the results show that uninformed

speculators can (profitably) affect firm value if the blockholder’s stake is not large enough

relative to the existing level of constraints on short selling.

17 The only exception is that for lower levels of risk aversion such that π < 2
5 + 2

5λ, the partial pooling
equilibrium can actually be more efficient with an active speculator. However, this is due mainly to
the fact that we assume discrete trading quantities. Because of this assumption, there is only one
possible type of partial pooling equilibrium in the absence of the speculator, and it happens to be more
efficient than the 4-share equilibria with a speculator and less efficient than the 2-share equilibria with
a speculator. Thus, this result arises from our specific modeling choices, not the general economics of
the problem.
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Clearly, the lower the thresholds illustrated in Fig. 4, the more likely it is that blockholders

already hold sufficient stakes and successful bear raids will be prevented. An important question

then is how these thresholds vary with the importance of decisions “at risk” from a bear raid.

In this respect, consider the effect of an increase in ε. This increases the expected value of the

relationship given both H and M signals, but in particular following M signals (the derivative

of VM with respect to ε is 1
2
, while the derivative of VH with respect to ε is (1− 2λ) < 1

2
). Thus,

an increase in ε can be interpreted as an increase in the importance of the decision following an

M signal, and as a measure of how important it is to prevent a successful bear raid. We have

the following comparative static.

Proposition 4 The thresholds i∗N and i∗S are decreasing in ε.

An increase in ε increases the blockholder’s incentive to prevent bear raids because it increases

the benefit to firm value from inducing an acceptance after an M signal, making him more

willing to incur the necessary expected trading losses. However, this intuitive effect is not the

only relevant one. It also turns out the expected trading losses he must suffer decrease because

VM is increasing in ε faster than is VH , and thus the spread between the pooled price VP and

the expected value VM decreases. When combined, these two (reinforcing) effects imply that

deviations from the efficient equilibrium become less attractive, reducing the size of the block

needed. Thus, blockholders are better placed to prevent bear raids precisely when they are likely

to be most damaging.

4 The speculator’s initial position and overall profits

In this section we introduce an additional trading round (hereafter the “first round”) that takes

place prior to the base model trading round (hereafter the “final round”). This allows us to

endogenize the stake the speculator chooses before entering the final round. As noted previously,
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S’s trades in the final round are executed at an expected loss, so for her trades in that round to

be incentive-compatible it is necessary that she be able to arrive at that stage with a sufficiently

large (and secret) position. Here we derive a mixed strategy equilibrium for the first round that

allows her to arrive at the final round with such a position, and show that the overall strategy

over the two rounds can be profitable.

Like in the final round, we assume that in the first round the noise trader buys one share with

probability 1
2

and sells one share with probability 1
2
. At the time of this round we assume that I

has not yet received his signal Θ. Since we consider I to be a long-term investor whose optimal

stake, i, is determined by factors outside our model (e.g., diversification concerns), we assume

he does not alter his stake size in this round. 18 The speculator arrives at the first round with

no position in the stock and can buy or sell one share, or choose not to trade. The market

maker observes net order flow and sets the price at the risk-neutral expected value (with full

knowledge of the potential implications of that order flow for the final round). For parsimony,

we only consider the case where π ∈ (2
5

+ 2
5
λ, 1

3
+ 2

3
λ], so that the most efficient partial pooling

equilibrium has a 4-share difference between the trades following M and H signals.

In the first round the speculator must play a mixed strategy to make trading profits, since

otherwise she will always arrive in the final round with a known position. In particular, we show

that it is an equilibrium strategy for S to buy one share with probability 1
2

and sell one share

with probability 1
2
. This obviously corresponds to the base model’s assumptions by equating

s = 1, s being the magnitude of the speculator’s position upon entering the final round.

If the speculator mixes in this way, her position will be hidden (secret) only 1
2

of the time—

when the noise trader trades in the opposite direction. When their trades are reinforcing, the

speculator’s trade will be revealed. Thus, in order to prove that S’s mixed strategy is part of

18 We have also analyzed the case where the blockholder is allowed to optimally adjust his stake in the
first round, but faces diversification costs for holding a suboptimally large stake between rounds. Our
main results continue to hold, and the analysis is available upon request.
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an overall equilibrium, we must first identify what happens in the final round when S’s position

has been revealed.

In such cases, we show that a pure strategy equilibrium exists in which S trades a single share in

the same direction as her first round trade, while everyone else essentially behaves as in the no

speculator case. In other words, if the speculator arrives with a known position and is expected

to play a pure strategy in the final round, the market maker and decision maker are able to

net out her effect on the order flow, and the equilibrium outcomes are the same as with no

speculator. Since S’s trades do not affect any outcomes, they are priced correctly (from her

perspective) and entail no trading loss.

Lemma 2 Assume S’s position on entering the final round is common knowledge. Then:

If i ≥ i∗N , there exists an equilibrium of the final round in which S buys one share if long

and sells one share if short, qHI = qMI ≥ 2, qLI ≤ qMI − 3, and D accepts the relationship iff

Q ≥ qMI − 1 + qS.

If i < i∗N , there exists an equilibrium of the final round in which S buys one share if long and

sells one share if short, qMI ≥ 0, qHI = qMI + 2, qLI < qMI − 1, and D accepts the relationship iff

Q ≥ qMI + 1 + qS.

In both cases S’s expected trading profit is zero.

From here on we assume these equilibria form the subgame following outcomes where S’s first

round trade is revealed by a reinforcing noise trade, whereas the most efficient available full

efficiency and partial pooling equilibria derived in Section 3 for the active speculator case form

the subgame following outcomes where S’s first round trade is hidden. This gives us the following

result.
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Theorem 5 A first round equilibrium exists in which S buys one share with probability 1
2

and

sells one share with probability 1
2
. If i < i∗S and the noise trader trades in the opposite direction

from S, the stock price is 5
8

+ 1
8
VM + 1

4
VH and S makes an overall expected profit of 1

8
(VM − 1)−

1
4
(VP − VM) > 0. If i ≥ i∗S or the noise trader trades in the same direction as S, S’s overall

expected profit is zero.

This result shows that the speculator is able to profit in expectation as long as her first round

trade is hidden and i is such that the blockholder does not hold a large enough stake to ensure

full efficiency, i.e., if a partial pooling equilibrium prevails in the final round. The first round

trade is profitable because the trade is priced at an average of the expected value of the firm with

a long versus short speculator. There is a gap between these values since, in the partial pooling

equilibrium, the speculator will either induce an increase in firm value on average (if long) or

induce a decrease (if short). The speculator plays off this gap, capturing first round expected

trading profits that exceed the final round expected trading losses. On the other hand, if the

blockholder’s stake is above the efficiency threshold or S’s trade is revealed, then the speculator’s

first round trades are still incentive-compatible, but her strategy entails an expected profit of

zero in both rounds because her trades have no effect on the decision maker.

5 Multiple blockholders

Many firms have multiple, smaller blockholders rather than one large blockholder. If the block-

holders can coordinate and act as a unit (i.e., commit among themselves to a joint trading

strategy), then the base model applies with the stake size i set equal to the sum of the block-

holders’ stakes. However, if they cannot commit to a unified trading strategy, then having a

disaggregated block could make it more difficult to achieve efficiency. In this section we consider

an extension of the model with two symmetric blockholders, and ask whether the stake size

required for efficiency differs from that for a single blockholder.
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For simplicity, we study only the final round and assume that each blockholder j ∈ {1, 2} enters

with a stake size of ij, where i1 = i2. We assume the blockholders receive the same signal, but

cannot coordinate their trading decisions. One might expect that with multiple blockholders

trading against the speculator, each blockholder’s required trade would be smaller, and the

required cumulative block size might be the same or even smaller than in Theorem 1. Past work

on blockholders shows results similar to this when governance is exercised through trading, i.e.,

in “exit” models such as Edmans and Manso (2011), where, in the absence of coordination,

trading by multiple blockholders results in more informative prices. Theories of “voice” on

the other hand find that having multiple blockholders reduces the effectiveness of blockholder

governance because of increased free-riding. Surprisingly, we find a result more in line with the

“voice” theories despite the fact that blockholders govern here through trading, as in the exit

models. In fact, we have the following result.

Proposition 6 A fully efficient equilibrium, in which blockholder j’s signal-contingent trades

are qHIj = qMIj ≥ 6 and qLIj such that qLI1 + qLI2 ≤ qMI1 + qMI2 − 5, the speculator buys one share if

long and sells one share if short, and D accepts the relationship iff Q ≥ qMI1 + qMI2 − 2, exists if

i1 = i2 ≥ i∗S = 12(VP−VM )
VM−1

. If i1 = i2 < i∗S = 12(VP−VM )
VM−1

, no fully efficient pure strategy equilibria

exist.

Essentially, each informed blockholder faces the same trading incentives as the single blockholder

in the base model. Given the expected trades of the other blockholder, each one faces the same

expected trading profit/loss per share in equilibrium, and each possible deviation has the same

impact on that blockholder’s profits as for the single blockholder in the base model. Intuitively,

since the blockholders are uncoordinated, each wants to trade just as aggressively to achieve

trading profits with an H signal as they would if they were a single blockholder, but this imposes

a high cost because of the trading losses that have to be incurred with an M signal. 19 Thus, to

19 The necessity here of incurring trading losses to govern is similar in spirit to the costs of intervention
in voice theories, and partially explains why our result is more in line with these theories.
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achieve efficiency, each informed blockholder must hold a stake as large as that required for a

single blockholder. In the absence of coordination, efficiency is therefore harder to achieve the

more dispersed the block ownership. This result should prove useful for empirical tests of the

model in addition to providing guidance for optimal ownership structures.

6 Empirical implications

Our model provides a number of new empirical implications. First, it identifies the role of a large

blockholder in countering manipulative short selling. Second, it shows that both the trading

quantity required and the size of the necessary block are disproportionately large relative to

the extent of short selling. Furthermore, for a given block size, manipulation is more likely to

succeed in destroying value the worse is the agency problem between shareholders and decision

makers (e.g., when decision makers are more risk averse with respect to the firm’s dealings),

when the decisions at risk are less important, and when there are multiple informed blockholders

who are unable to coordinate and do not individually hold a large enough stake.

We can derive some additional comparative statics from the thresholds in Proposition 1:

Proposition 7 The thresholds i∗N and i∗S are increasing in λ and d. However, if ε = κd for

some proportion κ < 1, then the thresholds are independent of d.

The result with respect to λ implies that the speculator will be more likely to find manipulation

profitable if informed shareholders’ information is relatively precise (when their signal is, in fact,

informative). Intuitively, an increase in λ increases the wedge between the perceived value of

an acceptance with an H versus M signal—driving VH up while leaving VM unchanged. This

raises the price VP without increasing the incentive for I to ensure an acceptance after an M

signal, i.e., the increase in information precision makes trading profits more important relative

to protecting the value of the stake. As a result, it is harder to get I to pool after an M, i.e.,
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pooling requires a larger initial position i. This has direct empirical implications about which

situations are more amenable to manipulation by a speculator. It also implies that an increase

in information precision can actually reduce efficiency. If the current block size i is just above

the threshold, then an increase in precision can make it inadequate, causing a discrete shift to

a less efficient partial pooling equilibrium.

The result with respect to d is similar. Increasing d without changing ε makes an acceptance

more profitable for the firm under an H signal, which drives up the pooled price and makes

downward deviation more attractive for I after an M. Thus, decisions that ex ante have greater

profit potential are more likely to encourage speculators to manipulate prices. On the other

hand, if ε and d are held in strict proportion, a change in decision “scale” (an increase in d and ε

in lockstep) has no effect on the thresholds. This is because the increased impact of the decision

affects I’s incentive to ensure an acceptance after an M signal and the trading losses required to

do so by the same proportion. Overall, these results imply that profitability matters more than

scale in terms of predicting when manipulation is likely to destroy value.

Going outside the strict confines of the model, we can provide additional predictions with respect

to which types of firms and situations are likely to become more vulnerable to attempted ma-

nipulation. First, our model implicitly assumes that opportunities depreciate relatively quickly,

i.e., if a relationship is not accepted, the decision cannot be changed later. The problem could

clearly be ameliorated if this were not the case and the value loss were less permanent. Second,

an unexpected relaxation of restrictions on short selling could create an imbalance between the

longs and the shorts, potentially allowing for successful bear raids.
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7 Conclusion

We argue that the existing debate over the costs and benefits of short selling activity has

overlooked an important participant in the market, the long-term blockholder. If there is concern

that short sellers can cause an inferior allocation of resources by manipulating prices down, a

blockholder has a powerful natural incentive to battle the shorts in an attempt to prevent

such undesirable outcomes. However, he also has a potentially conflicting incentive to use his

information to generate trading profits. In this setting a speculator can exploit this conflict,

forcing the blockholder to buy a disproportionately large amount compared to the expected

amount of short selling. Since some of this buying may need to be done at unfavorable prices,

it can lead to significant trading losses. If the blockholder’s existing stake is insufficient to

justify incurring these losses, then short sellers may succeed in inducing suboptimal decisions

and destroying value. However, we also show that smaller stakes are sufficient for preventing

bear raids when the decisions at risk have larger value impact, which also turn out to be the

cases where the costs of preventing bear raids are lower. Thus, markets have some ability to

self-correct against the more egregious abuses of short selling.

Our analysis implies that if outside intervention is to be considered, it should be targeted to

firms or circumstances where blockholdings are likely to be inadequate. This could arise because

of diversification motives; uncertainty about the extent of potential short selling; unexpected

or sudden relaxing of market-imposed constraints on short selling through, for instance, non-

exchange-traded credit default swap contracts; or simply because the timing of important deci-

sions is stochastic requiring blockholders to hold undiversified positions for indefinite periods.

Furthermore, if the possibility of value destruction is considered significant, potential remedies

may lie not only in restricting short sellers, but also in enhancing the incentives for blockholders

to increase their positions. The paper also points out that existing restrictions on short sales,

which make it harder for speculators to amass positions, play an important role.
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Appendix

Proof of Lemma 1. Given any pure strategy for S, if qHI 6= qMI , then there will be some order

flows Q after a trade of qMI such that only trades of qMI or qLI could result in those order flows

in equilibrium. Thus, µ(Q) ≤ 1
2

must hold at those order flows, and D will not accept since

π ≥ 1
2
. With respect to I’s strategy after an L, if qHI = qMI while qLI is such that the resulting

equilibrium order flows could not follow a trade of qMI , then all possible equilibrium order flows

Q that can result after a trade of qMI = qHI will lead to beliefs µ(Q) = 1
3

+ 2
3
λ, which is sufficient

for acceptance since π ∈ (1
2
, 1
3

+ 2
3
λ]. If instead qLI were such that any of the possible resulting

order flows could also result from a trade of qMI = qHI , then either the relationship is inefficiently

accepted after an L or inefficiently rejected after an M or H. QED

Proof of Theorem 1. First consider the no speculator case with the generic class of efficient

pure strategy equilibria introduced in the text. We formally specify out-of-equilibrium beliefs as

follows. For all Q ≤ q+I − 2 we assume a belief that the signal is L (this is pinned down by our

belief monotonicity assumption when qLI = q+I − 3). The belief at Q = q+I is pinned down by

our monotonicity assumption at a 1
3

probability of an H signal and 2
3

probability of an M signal.

Finally, for all Q ≥ q+I +2 we assume a belief that the signal is H. Note that these assumed beliefs

make downward deviations after M signals and upward deviations after H signals as unattractive

as possible (these beliefs minimize the probability of acceptance following an M for downward

deviations, and minimize potential trading profits following an H for upward deviations), and

thus ensure existence of the equilibrium over the largest possible parameter space. As noted in

the text, the most relevant potential deviations are upward deviations after an H signal and

downward deviations after an M signal. From the text, a deviation to q+I + 2 after an H signal

is profitable for all q+I < 2, and with the minimum trade of q+I = 2 (which is the easiest such

equilibrium to sustain), the blockholder will deviate down by two shares (which is shown below

to be the most profitable deviation) after an M signal unless i ≥ 4(VP−VM )
VM−1

.
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For the active speculator case we formally specify out-of-equilibrium beliefs analogously to the

no speculator case: the signal is believed to be L for all Q ≤ q+I − 3 and H for all Q ≥ q+I + 3,

while for Q ∈ {q+I − 1, q+I + 1}, the monotone beliefs assumption requires the belief that the

signal is H with probability 1
3

and M with probability 2
3
. As above, these beliefs ensure existence

of the equilibrium over the largest possible parameter space. From the text, a deviation to

q+I + 2 is profitable for all q+I < 6 following an H signal, and given the minimum trade of +6 the

blockholder will deviate down by two shares after an M signal (which again is shown below to

be the most profitable deviation) unless i ≥ 12(VP−VM )
VM−1

.

The remaining issues not proven are: showing that the speculator’s trades are incentive-compatible

and individually rational in the active speculator case; and showing that the deviations consid-

ered above are the most relevant deviations. First consider the speculator’s trades. Note that

given the equilibria under consideration, S’s trade cannot affect D’s decision following any sig-

nal. Then denoting the expected value of the firm in equilibrium as E(V ), S’s expected payoff is

sE(V ) no matter the quantity she trades since her trades are at zero expected profit or loss. To

see this, note that the expected price of any of her trades is 3
4
VP + 1

4
, while the expected value

of the firm is 1
4
VH + 1

2
VM + 1

4
, which are equivalent (to see this, replace VP with 1

3
VH + 2

3
VM).

Since a trade of zero is in the choice set, individual rationality is guaranteed.

We now show that we have focused on the relevant deviations for I in the text. First consider

upward deviations after an H signal in the no speculator case. If I deviates up by three or more

shares, the price is always VH , so trading profits are eliminated. If I deviates up to q+I + 1,

the expected trading profit is 1
2
(q+I + 1)(VH − VP ), which is lower than that derived for the

2-share deviation in the text. Next consider downward deviations after an M signal in the no

speculator case. A downward deviation by three or more shares results in rejection by D, so

the expected payoff is i. This is preferred to the equilibrium payoff if i > iVM + q+I (VM − VP ),

or, rearranging, if i <
q+I (VP−VM )

VM−1
, which is always harder to satisfy than the condition for the

2-share deviation in the text. A downward deviation by one share yields an expected payoff of
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i(1
2
VM + 1

2
) + 1

2
(q+I − 1)(VM − VP ) since D accepts half of the time, just as with the 2-share

deviation. Since the trading quantity is higher, this expected payoff is clearly always lower than

that for the 2-share deviation in the text.

For the active speculator case, consider upward deviations after an H signal. An upward deviation

by one share has D still always accepting and yields an expected trading profit of 3
4
(q+I +1)(VH−

VP ), which is clearly inferior to the 2-share deviation. A 3-share deviation again has D always

accepting, and an expected trading profit of 1
4
(q+I + 3)(VH − VP ), while a 4-share deviation has

expected trading profit of 1
4
(q+I + 4)(VH − VP ), which is clearly superior. The 2-share deviation

profit is even higher if 3
4
(q+I + 2) > 1

4
(q+I + 4), which always holds for q+I > −1 and thus always

holds in the ranges where the equilibria may exist given the analysis in the text. Deviations up

by more than four shares yield no trading profits.

Now consider deviations downward after an M signal in the active speculator case. Similar to

the upward deviations, it is straightforward to show that a 2-share deviation is better than a

1-share deviation, and a 4-share deviation is better than a 3-share deviation (they have the

same acceptance probability and lower trading losses). A 4-share deviation has a 1
4

probability

of acceptance, leading to an expected payoff of i(1
4
VM + 3

4
) + 1

4
(q+I − 4)(VM − VP ). Comparing

this to the equilibrium payoff in the text, deviation is profitable if i <
(q+I + 4

3
)(VP−VM )

VM−1
, which is

clearly harder to satisfy than the condition for the 2-share deviation in the text. A deviation

by five or more shares has zero probability of acceptance, and thus expected payoff of i. This is

preferred to the equilibrium payoff if i <
q+I (VP−VM )

VM−1
, which is again harder to satisfy than the

2-share deviation condition.

We must also show that I will not deviate either up or down after an L signal, and will not

deviate downward after an H signal or upward after an M signal. With respect to the L signal,

note that I makes no trading profit or loss in equilibrium (the price is always correctly one),

and the value of his position i is maximized by non-acceptance since an acceptance is inefficient.
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The only possibility for a trading profit with an L would be if I could sell some quantity for

“too high” of a price and cause an inefficient acceptance some of the time (buying and having D

accept is never optimal because he would be buying at too high of a price, leading to a trading

loss). But this is impossible given the results above since a sale of one share would result in a

maximum order flow of Q = 0 in the no speculator case and Q = +1 in the active speculator

case, which is never sufficient for acceptance given q+I ≥ +2 with no speculator and q+I ≥ +6

with an active speculator. With respect to the H signal, note that deviating down will reduce

the value of I’s initial position (D sometimes rejects) while also reducing his trading profits

(there is no profit when D rejects). Similarly, after an M signal an upward deviation would leave

the value of the initial position unchanged, but increase the trading loss since the price would

sometimes be VH . QED

Proof of Proposition 2. The proof proceeds by construction. First consider an equilibrium in

the no speculator case in which qHI = +2, qMI = 0, and qLI = −2. At order flow Q = +3, Bayes’

Rule implies that the signal is H. At order flow Q = +1, the posterior is µ(Q) = 1
3

+ 2
3
λ, so D

accepts, which results in price VP . We assume out-of-equilibrium beliefs are such that at order

flow Q = 0, the signal is assumed to be M, that at all Q ≥ +2 the signal is assumed to be H,

and that at all Q ≤ −2 the signal is assumed to be L. At all equilibrium order flows Q ≤ 0,

µ ≤ 1
2

holds, so D rejects and the price equals one.

First note that deviations by I following an L signal are not optimal. The initial position i has

its value maximized when D rejects (as always happens in equilibrium), and the only possibility

of trading profits would arise if I could sell less and still have D sometimes accept. This is not

possible since a sale of one share can never lead to acceptance (the maximum resulting order

flow is zero). Next note that upward deviations by I after an H signal cannot be optimal. Any

such deviation would have D always accepting, as in equilibrium, and would have trading profits

of zero since the price would always be VH .
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Now consider downward deviations by I after an H signal. In equilibrium, D always accepts

after an H, maximizing the value of i, and I has an expected trading profit of 1
2
(2)(VH −VP ). A

deviation to +1 means that D will accept only 1
2

of the time, and there are no trading profits

(the trades are correctly priced at Q = 0 and Q = +2 given this deviation). A deviation to

zero has no trading profits and D also accepts only 1
2

of the time, so this cannot be profitable.

Similarly, upward deviations by I will not be profitable—D always accepts at price VH , so that

trading profits are eliminated.

Finally, I has no incentive to deviate down after an M signal. In equilibrium, D accepts 1
2

of the

time, and there are no trading profits/losses since he is not trading, i.e., the expected payoff is

i(1
2

+ 1
2
VM). After a downward deviation, D will always reject and there are still no trading losses

in equilibrium. Finally, consider an upward deviation after an M. A deviation up to +1 cannot be

optimal—D still accepts 1
2

of the time, but now trading losses occur in those states. A deviation

to +2 has D always accepting—the expected payoff is iVM − 1
2
(2)(VP − VM)− 1

2
(2)(VH − VM).

Comparing this to the equilibrium expected payoff shows that deviation is profitable if i >

2(VP−VM )+2(VH−VM )
VM−1

, which equals 2i∗N . Thus, this equilibrium exists for all i ∈ [0, 2i∗N ]. QED

Proof of Theorem 3. The proof proceeds by construction. First assume π ∈ (2
5

+ 2
5
λ, 1

3
+ 2

3
λ].

Consider an equilibrium in which qMI ≥ +1, qHI = qMI + 4, and qLI = qMI − 2. At the equilibrium

order flows we have: if Q ∈ {qMI + 4, qMI + 6}, D accepts and p(Q) = VH ; if Q = qMI + 2, D

accepts and p(Q) = VP ; if Q ≤ qMI , D rejects and p(Q) = 1. For out-of-equilibrium beliefs, we

assume that for all Q ≥ qMI + 3 the signal is assumed to be H, for all Q ≤ qMI − 3 the signal is

assumed to be L, for Q = qMI +1 the posterior is µ = π, and at Q = qMI −1 the signal is assumed

to be M or L with equal probability. For the out-of-equilibrium order flow Q = qMI + 1, D is

indifferent and is expected to accept with 50% probability. We label the corresponding value

conditional upon acceptance as VI = π(1 + d) + (1− π)(1− d+ ε).
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Now, consider S’s incentive to deviate. S enters the trading round with a position of magnitude

s ≥ 1. First assume this is a short position, −s. Then if the speculator short sells one share as the

equilibrium requires, the possible equilibrium order flows are (from her perspective): if θ = L,

Q ∈ {qMI −4, qMI −2} with equal probability (due to the noise trade); if θ = M , Q ∈ {qMI −2, qMI }

with equal probability; and if θ = H, Q ∈ {qMI + 2, qMI + 4} with equal probability. Thus, D

will never accept after an M or L signal, and the price will always be one in those cases. D will

always accept after an H and the price is VH or VP with equal probability. L, M, and H signals

arrive with ex ante unconditional probabilities of 1
4
, 1

2
, and 1

4
, respectively. Thus, the expected

price is 3
4

+ 1
8
VH + 1

8
VP . The expected value of the shares is 3

4
+ 1

4
VH . The speculator’s expected

payoff to the equilibrium strategy is therefore −s(3
4

+ 1
4
VH)− 1

8
(VH − VP ) (trading losses occur

only when D accepts at price VP after an H), and the latter term represents the expected trading

loss (which is easily shown to be equivalent to 1
4
(VP − VM) as stated in the result).

The only relevant deviation will be to not trade (buying will further reduce the value of s

while also causing trading losses). With a deviation to zero, possible order flows are: if θ = L,

Q ∈ {qMI −3, qMI −1}; if θ = M , Q ∈ {qMI −1, qMI +1}; and if θ = H, Q ∈ {qMI +3, qMI +5}. The

only differences in outcomes are that D is now expected to accept after an M signal 1
4

of the time

(noise buys 1
2

of the time, and thenD is expected to accept 1
2

of the time when that happens). The

speculator’s expected payoff is therefore −s(5
8
+ 1

8
VM + 1

4
VH) since S is trading zero. Thus, selling

yields an increase in the expected value of S’s stake of −s(3
4

+ 1
4
VH)− (−s(5

8
+ 1

8
VM + 1

4
VH)) =

1
8
s(VM − 1) as given in the result. Comparing S’s expected payoff to the equilibrium payoff, the

deviation is profitable if s < VH−VP
VM−1

= 2(VP−VM )
VM−1

. Since we have assumed 2(VP−VM )
VM−1

< 1 for this

case, S will not deviate.

For the case with a long position of s, we similarly must check the deviation to no trade.

Following similar logic, the equilibrium expected payoff to buying one share is s(1
2

+ 1
4
VM +

1
4
VH)− 1

4
(VP − VM). The expected payoff to not trading is s(5

8
+ 1

8
VM + 1

4
VH). Comparing this
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to the equilibrium payoff, the deviation is profitable if s < VH−VP
VM−1

= 2(VP−VM )
VM−1

, so again S will

not deviate. It is straightforward to show that S’s expected trading loss and the increase in the

value of her position from buying rather than not trading are the same as in the case where S

arrives short.

Next consider I’s possible deviations. There is no profitable deviation with an L since I cannot

sell any quantity and have positive probability of acceptance. I will never optimally deviate

upward with an H since all trading profits will be eliminated (D will always accept at price VH).

Consider downward deviations after an H. It is straightforward to show that the most attractive

deviation will be to qMI + 2. With this deviation, D either: accepts at Q = qMI + 4 at price VH ,

accepts at Q = qMI + 2 at price VP , or rejects at Q = qMI . The expected payoff is therefore

i(1
4

+ 3
4
VH) + 1

2
(qMI + 2)(VH − VP ). Comparing this to the equilibrium payoff, the deviation is

profitable if i <
qMI (VH−VP )

VH−1
.

Next consider downward deviations after an M. I’s equilibrium expected payoff is i(3
4

+ 1
4
VM)−

1
4
qMI (VP −VM). If he deviates down by one share to qMI − 1, D will accept with some probability

only if Q = qMI + 1, and then with only 1
2

probability, which yields an expected payoff of

i(7
8

+ 1
8
VM) + 1

8
(qMI − 1)(VM − VI). Comparing this to the equilibrium payoff, the deviation

is profitable if i <
(qMI +1)(VP−VM )+(qMI −1)(VP−VI)

VM−1
. It is straightforward to show this is the most

attractive deviation.

Now compare the 1-share downward deviation condition after an M assuming VI = VP , i <

(qMI +1)(VP−VM )

VM−1
, to the 2-share downward deviation condition after an H, i <

qMI (VH−VP )
VH−1

. By

replacing the V terms with their algebraic definitions in terms of the model’s primitives, it is

straightforward to show that the former equals
2(qMI +1)Y

3ε
and that the latter equals

qMI Y

3γ
, where

Y ≡ (2d − ε)(2λ − 1
2
) and γ ≡ (2d − ε)λ + 1

2
(ε − d). Consider the ratio γ

ε
. Our assumption

that VL < 1 implies ε < d(4λ−1)
2λ

. We have
∂ γ
ε

∂ε
=

d( 1
2
−2λ)

ε2
< 0, and plugging for the maximum ε

we have γ
ε

= 1
2
, so γ ≥ 1

2
ε must always hold. Plugging this minimum γ into the expression for
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the downward deviation condition following an H yields
qMI Y

3 1
2
ε

=
2qMI
3ε

, so the downward deviation

condition following an M is always larger. Now note that the general condition for the 2-share

downward deviation after an M, i <
(qMI +1)(VP−VM )+(qMI −1)(VP−VI)

VM−1
, increases as VI falls below VP ,

and VI ≤ VP always holds, so this is always the relevant downward cutoff for existence of the

equilibrium.

Finally consider upward deviations after an M. It is straightforward to show that either the

1-share deviation to qMI + 1 or the 2-share deviation to qMI + 2 is the relevant deviation. The

latter deviation yields an expected payoff of i(1
4

+ 3
4
VM) − 1

4
(qMI + 2)(VH − VM) − 1

2
(qMI +

2)(VP − VM). Comparing this to the equilibrium expected payoff, the deviation is profitable

if i >
(2qMI +5)(VP−VM )

VM−1
. The former deviation yields an expected payoff of i(1

2
+ 1

2
VM) − 1

2
(qMI +

1)(1
2
VH+ 1

2
VI−VM). Comparing this to the equilibrium expected payoff, the deviation is profitable

if i >
(3qMI +4)(VP−VM )−(qMI +1)(VP−VI)

VM−1
. Thus, the relevant range of existence for this equilibrium is

i ∈ [
(qMI +1)(VP−VM )+(qMI −1)(VP−VI)

VM−1
,min[

(2qMI +5)(VP−VM )

VM−1
,
(3qMI +4)(VP−VM )−(qMI +1)(VP−VI)

VM−1
]].

Now note that at the minimum qMI we specified, qMI = +1, the lower boundary is clearly less than

one given our assumption that 2(VP−VM )
VM−1

< 1. Also, as qMI is increased, both the upper and lower

boundaries of existence for the equilibrium increase, and the upper boundary is clearly always

greater. Furthermore, the upper boundary clearly exceeds i∗S at a value of qMI = 5. Finally, note

that the new lower boundary lies below the old upper boundary each time qMI is increased by

one (plugging qMI + 1 into the lower boundary yields
(qMI +2)(VP−VM )+qMI (VP−VI)

VM−1
<

(2qMI +2)(VP−VM )

VM−1
),

so considering each equilibrium as qMI increases by one from +1 to +5 yields the result.

Now assume π ∈ (1
2
, 2
5
+ 2

5
λ]. Consider an equilibrium in which qMI = +3, qHI = +5, and qLI = −2.

At the equilibrium order flows we have: if Q = +7, D accepts and p(Q) = VH ; if Q = +5, D

accepts and p(Q) = V +
P where V +

P = 1
2
VH + 1

2
VM ; if Q = +3, D accepts and p(Q) = V −

P where

V −
P = 1

5
VH + 4

5
VM ; and if Q ≤ +1, D rejects and p(Q) = 1. For out-of-equilibrium beliefs, we

assume that for all Q ≥ +6 the signal is assumed to be H, for all Q ≤ 0 the signal is assumed
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to be L, for Q = +2 the posterior is µ = π, and at Q = +4 the signal is assumed to be H

with 1
3

probability and M with 2
3

probability (so that the relevant expected value is VP ). For

the out-of-equilibrium order flow Q = +2, D is indifferent and is expected to accept with 50%

probability.

Since the logic of the proof proceeds similarly to the above, for brevity we note here only the

most relevant deviation possibilities. We first consider deviations by S. Assume S arrives short.

As above, the only relevant deviation is not to trade. S’s equilibrium expected payoff upon

selling one share can be written as −s(1
2

+ 1
4
VM + 1

4
VH)− 9

80
(VH−VM). The latter term gives S’s

expected trading loss, and is easily shown to be equivalent to 27
80

(VP −VM) as given in the result.

If she deviates to not trading, her expected payoff is −s(3
8

+ 3
8
VM + 1

4
VH). Comparing the two

expected payoffs, deviation is profitable if s <
27
10

(VP−VM )

VM−1
. It is straightforward to show that the

problem is symmetric if S arrives long and the same trading loss and deviation condition applies.

Thus, given our assumptions that
27
10

(VP−VM )

VM−1
< 1 for this case and s ≥ 1, S will not deviate. To

see the expression for the gain in expected value given in the result, note that when S arrives

short, she increases the value of her short position from −s(3
8
+ 3

8
VM+ 1

4
VH) to −s(1

2
+ 1

4
VM+ 1

4
VH)

by selling short again, and symmetrically for the case when she arrives long.

It is also straightforward to show that the relevant remaining deviations that most tightly

constrain the equilibrium’s existence are deviations by I to trades of +1 or +5 after an M signal.

I’s equilibrium expected payoff after an M signal can be expressed as i(1
4

+ 3
4
VM)− 27

40
(VH−VM).

A deviation to +1 yields an expected payoff of i(3
4

+ 1
4
VM) − 1

20
(VH − VM). Comparing these,

deviation is profitable if i <
51
20

(VP−VM )

VM−1
<

27
10

(VP−VM )

VM−1
< 1. A deviation to +5 yields an expected

payoff of iVM − 55
20

(VH − VM). Comparing this to the equilibrium expected payoff, deviation is

profitable if i >
249
10

(VP−VM )

VM−1
> i∗S. QED
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Proof of Proposition 4. First note that both thresholds are multiples of VP−VM
VM−1

. Replacing the

terms VP and VM with their expressions in terms of the model primitives yields 1
3

+
2
3
(4λd−2λε−d)

ε
.

Taking the derivative with respect to ε yields −
2
3
d(4λ−1)

ε2
< 0. QED

Proof of Lemma 2. The proof is again by construction. First consider the full efficiency

equilibrium analog to the no speculator case in which qMI = qHI = q+I ≥ +2 and qLI = q+I − 3.

Now assume the speculator arrives long s shares (which is common knowledge) and is prescribed

to buy one share. Possible equilibrium order flows are Q ∈ {q+I , q+I +2} following H and M signals

depending on whether the noise trader buys or sells. Thus, D accepts at these order flows and

the price is VP . An L signal results in Q ∈ {q+I − 3, q+I − 1}, so D rejects for all Q ≤ q+I − 1

and the price is one (out-of-equilibrium beliefs must place all weight on L in that range given

monotone beliefs). Our monotone beliefs assumption also requires that at out-of-equilibrium

node Q = q+I + 1, D’s posterior is µ(Q) = 1
3

+ 2
3
λ, so he accepts and the price is VP . Checking

possible deviations by I proceeds as in the proof of Proposition 1 (note that I still cannot deviate

to a “sell” quantity after an L and get D to accept, as selling one share leads to a maximum

order flow of q+I − 1 if S buys, which is insufficient to get it accepted, and q+I − 3 if S is short

and sells, which is again insufficient to get D to accept—see below), and it is straightforward

to show that I’s incentive to deviate downward to q+I − 2 after an M again limits the range of

existence to i ≥ i∗N . The only remaining deviations to check are deviations by S.

In equilibrium, S’s expected payoff is s(1
4

+ 1
2
VM + 1

4
VH) (S’s trade is always executed at fair

value from her perspective, so there is no expected trading profit or loss). If S deviates to zero,

the M or H signal order flow becomes Q ∈ {q+I − 1, q+I + 1}, so D will accept only 1
2

of the time,

reducing the expected payoff to s(5
8

+ 1
4
VM + 1

8
VH). If S deviates to −1, D will again accept only

1
2

of the time, and there will again be no trading profit. Thus, S will not deviate. The proof for

the case where S arrives short s shares is analogous.
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Next consider the partial pooling equilibrium in which qHI = +2, qMI = 0, and qLI = −2. Now

assume the speculator arrives long s shares (which is common knowledge) and is prescribed to

buy one share. The equilibrium order flow possibilities are: if the signal is H, Q ∈ {+4,+2}; if

the signal is M, Q ∈ {+2, 0}; if the signal is L, Q ∈ {−2, 0}. Thus, D accepts at price VH at

Q = +4, accepts at price VP at Q = +2, and rejects for lower Q. We assume out-of-equilibrium

beliefs are such that D accepts at price VH for all Q ≥ +3, while D rejects for any Q ≤ +1 (the

signal is believed to be M or L). Again, checking for deviations by I proceeds as in prior proofs

and shows that the equilibrium exists for the entire range of i ∈ [0, i∗N ].

Finally, consider deviations by S. S’s equilibrium payoff is s(1
2

+ 1
4
VM + 1

4
VH) (again, the trades

are priced at fair value from her perspective). If S deviates to zero, D always rejects after an M

and accepts 1
2

of the time after an H, so S’s expected payoff is s(7
8

+ 1
8
VH). A deviation to −1

yields the same expected firm value, but there is a trading loss because D sometimes accepts

after an H at price VP , which is too low. The proof for when S arrives short is analogous. QED

Proof of Theorem 5. If i ≥ i∗S, the full efficiency equilibrium will prevail in the final round,

and all of the speculator’s trades in both rounds will be correctly priced from her perspective

(yielding zero expected profit/loss) and are therefore incentive-compatible.

Now assume i ∈ [1, i∗S). From Lemma 2 and the proceeding text we know that if the speculator

and noise trader trade in the same direction in the first round, the speculator has zero profit/loss

overall (both the first and final round trades occur at zero profit/loss). Note that all of the prices

derived above for the active speculator case reflect a 1
2

probability that S will be long vs. short

when her position entering the final trading round is unknown. Thus, using these prices it suffices

to show that mixing with probability 1
2

between buying and selling one share in the first trading

round is incentive-compatible and profitable for S. If the speculator does not trade, she gets an

overall expected payoff of zero (it is easy to show she can never profit from trading against I
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with no initial position in the base model, so we assume she would not trade again, leading to

an overall expected payoff of zero).

First we derive the first round market price assuming that the speculator’s trade is not discovered

(i.e., the noise trader trades in the opposite direction). Recall that in the range of i we need

to consider, we have assumed the final round (base model) equilibrium is the relevant partial

pooling equilibrium from Proposition 3. Now, given the order flow of zero, the market maker

perceives that there is a 50/50 probability of S having gone long or short. If the speculator is

short, the expected per share firm value is 3
4

+ 1
4
VH . If the speculator is long, the expected per

share firm value is 1
2

+ 1
4
VM + 1

4
VH . The overall expected firm value places 1

2
weight on each,

which yields 5
8

+ 1
4
VH + 1

8
VM , so this is the first round price when S’s trade is hidden.

S’s expected payoff equals the sum of the expected trading profits (losses) from each round.

These both equal zero if the first round trade is revealed (the noise trader trades in the same

direction). Thus, the overall expected payoff to S if she buys one share can be expressed as

1
2

[
(1
4
VH + 1

4
VM + 1

2
− 5

8
− 1

4
VH − 1

8
VM)− 1

4
(VP − VM)

]
, where the first term in the brackets is

the expected first round trading profit, the second term is the expected final round trading

loss, and the multiplication by 1
2

accounts for the probability that the trade is hidden by an

offsetting noise trade (dropping the 1
2

yields the expression in the result, which is expected profit

conditional on being hidden). This simplifies to

1

2

[
1

8
(VM − 1)− 1

4
(VP − VM)

]
. (8)

Similarly, the overall expected payoff if S sells one share can be expressed as 1
2
[−(3

4
+ 1

4
VH − 5

8
−

1
4
VH − 1

8
VM)− 1

8
(VH − VP )], which simplifies to

1

2

[
1

8
(VM − 1)− 1

8
(VH − VP )

]
. (9)
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Note that (8) and (9) are equivalent given VP = 1
3
VH + 2

3
VM . This proves S is indifferent between

buying and selling.

To prove the strategy is incentive-compatible, we must show that (8) and (9) are positive. From

the proof of Propostition 4, 2(VP−VM )
VM−1

= 2
(

1
3

+
2
3
(4λd−2λε−d)

ε

)
. It is straightforward to show that

our assumption that 2(VP−VM )
VM−1

< 1 thus implies ε > 4d(4λ−1)
1+8λ

. Now note that 1
2

[
1
8
(VM − 1)− 1

8
(VH − VP )

]
>

0 holds if (VM − 1) − (VH − VP ) > 0. Replacing the defined terms in this last expression with

their definitions in terms of the primitives and rearranging yields d(2
3
− 8

3
λ) + ε(1

6
+ 4

3
λ), which

is positive if ε > 4d(4λ−1)
1+8λ

. QED

Proof of Proposition 6. Consider an equilibrium in which each blockholder is told to trade

q+Ij after an H or M signal, and qLIj such that qLI1 + qLI2 ≤ q+I1 + q+I2 − 3 after an L signal. Possible

equilibrium order flows are as in the efficient equilibria for the single blockholder case with q+I

replaced everywhere by q+I1 +q+I2, and qLI replaced by qLI1 +qLI2. Out-of-equilibrium beliefs are also

specified analogously (as discussed in the text with regard to the equilibrium in Fig. 2), which

ensure existence of the equilibrium over the largest possible parameter space. As with the single

blockholder case, it is easy to show that the most attractive deviations for each blockholder are

to buy two more shares after an H signal, and buy two less after an M signal. With the former

deviation, just as in the single blockholder case, either blockholder would lose trading profits with

probability 1
4
, so that deviation is profitable if 3

4
(q+Ij + 2)(VH −VP ) > q+Ij(VH −VP ) =⇒ q+Ij < 6.

Further, just as in the single blockholder model, if he deviates down to a trade of +4 after an M

signal, his deviation will be detected and the relationship will be rejected with only 1
4

probability,

but he will save significant trading losses, which is profitable if i(3
4
VM + 1

4
) + 3

4
4(VM − VP ) >

iVM + 6(VM − VP ) =⇒ ij <
12(VP−VM )
VM−1

.

It remains to show that no other type of fully efficient pure strategy equilibrium can exist when

i1 = i2 < 12(VP−VM )
VM−1

. Such equilibria can be asymmetric across the blockholders as long as

qHI1 + qHI2 = qMI1 + qMI2 . First note that the results above imply that any such equilibrium must
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have each blockholder trading at least six shares following an H signal (any less will result in a

profitable deviation up by two shares). Thus, the minimum quantity of aggregate trade across

the two blockholders is 12 shares after an M or H signal. Any efficient equilibrium must therefore

require either that both blockholders trade at least six shares after an M, or that at least one

trade more than six shares. But the results above imply that any blockholder required to trade

six or more shares after an M will have an optimal deviation to a lower trade if their block is

smaller than 12(VP−VM )
VM−1

. QED

Proof of Proposition 7. Directly calculating ∂i∗N

∂λ
yields 8(2d−ε)

3ε
> 0. Directly calculating ∂i∗N

∂d

yields
8(2λ− 1

2
)

3ε
> 0. Substituting κd for ε in i∗N yields

8(λ(2−κ)+ 1
2
(κ−1))

3
, which is clearly independent

of d. The proofs for i∗S are analogous. QED
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