Nitrous oxide emission from denitrification in stream and river networks

1Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556; 2Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49090; 3Department of Natural Resources and Environment and Complex Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824; 4Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071; 5Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; 6Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996; 7Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543; 8Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331; 9Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, MD, 20688; 10Department of Biology, University of New Mexico, Albuquerque, NM 87131; 11Division of Biology, Kansas State University, Manhattan, KS 66506; 12School of Life Sciences, Arizona State University, Tempe, AZ 85287; 13Pacific Northwest Research Station, US Forest Service, Corvallis, OR 97331; 14Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824; 15Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717; 16Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061; 17Department of Biological Sciences, Central Washington University, Ellensburg, WA 98926; 18Department of Biology, Ball State University, Muncie, IN 47306; 19Department of Earth and Environmental Sciences, Wright State University, Dayton, OH 45435; 20Odum School of Ecology, University of Georgia, Athens, GA 30602; 21School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405; 22School of Biological Sciences, University of Canterbury, Christchurch 8014, New Zealand; and 23School of Earth and Environmental Sciences, Washington State University, Vancouver, WA 98686

Edited by William H. Schlesinger, Cary Institute of Ecosystem Studies, Millbrook, NY, and approved November 11, 2010 (received for review August 4, 2010)

Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N is produced by river networks, but little is known about the N2O yield in flowing waters. Here, we present the results of whole-stream 15N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N2O at rates that increase with stream water nitrate (NO3−) concentrations, but that <1% of denitrified N is converted to N2O. Unlike some previous studies, we found no relationship between the N2O yield and stream water NO3−. We suggest that increased stream NO3− loading stimulates denitrification and concomitant N2O production, but does not increase the N2O yield. In our study, most streams were sources of N2O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg N/yr−1 of anthropogenic N inputs to N2O in river networks, equivalent to 10% of the global anthropogenic N2O emission rate. This estimate of stream and river N2O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.

Humans have more than doubled the availability of fixed nitrogen (N) in the biosphere, particularly through the production of N fertilizers and the cultivation of N-fixing crops (1). Increasing N availability is producing unintended environmental consequences including enhanced emissions of nitrous oxide (N2O), a potent greenhouse gas (2) and an important cause of stratospheric ozone destruction (3). The Intergovernmental Panel on Climate Change (IPCC) estimates that the microbial conversion of agriculturally derived N to N2O in soils and aquatic ecosystems is the largest source of anthropogenic N2O to the atmosphere (2). The production of N2O in agricultural soils has been the focus of intense investigation (i.e., >1,000 published studies) and is a relatively well constrained component of the N2O budget (4). However, emissions of anthropogenic N2O from streams, rivers, and estuaries have received much less attention and remain a major source of uncertainty in the global anthropogenic N2O budget.

Microbial denitrification is a large source of N2O emissions in terrestrial and aquatic ecosystems. Most microbial denitrification is a form of anaerobic respiration in which nitrate (NO3−), the dominant form of inorganic N) is converted to dinitrogen (N2) and N2O gases (5). The proportion of denitrified NO3− that is converted to N2O rather than N2 (hereafter referred to as the N2O yield and expressed as the mole ratio) partially controls how much N2O is produced via denitrification (6), but few studies provide information on the N2O yield in streams and rivers because of the difficulty of measuring N2 and N2O production in these systems. Here we report rates of N2 and N2O production via denitrification measured using whole-stream 15NO3− tracer experiments in 72 headwater streams draining different land-use types across the United States. This project, known as the second Lotic Intersite Nitrogen eXperiment (LINX II), provides unique whole-system measurements of the N2O yield in streams.

Although N2O emission rates have been reported for streams and rivers (7, 8), the N2O yield has been studied mostly in lentic freshwater and marine ecosystems, where it generally ranges between 0.1 and 1.0%, although yields as high as 6% have been observed (9). These N2O yields are low compared with observations in soils (0–100%) (10), which may be a result of the relatively lower oxygen (O2) availability in the sediments of lakes and estuaries. However, dissolved O2 in headwater streams is commonly near atmospheric equilibrium and benthic algal bio-

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor. Freely available online through the PNAS open access option.
1Present address: US Environmental Protection Agency, Cincinnati, OH 45268.
2To whom correspondence should be addressed. E-mail: beaulieu.jake@epa.gov.
3Present address: US Geological Survey Water Science Center, Tacoma, WA 98402.
4This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011464108/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1011464108

PNAS Early Edition | 1 of 6
films can produce O2 at the sediment–water interface, resulting in strong redox gradients more akin to those in partially wetted soils. Thus, streams may have variable and often high N2O yields, similar to those in soils (11). The N2O yield in headwater streams is of particular interest because much of the NO3 input to rivers is derived from groundwater upwelling into headwater streams. Furthermore, headwater streams compose the majority of stream length within a drainage network and have high ratios of bioreactive benthic surface area to water volume (12).

Results and Discussion

The 15N-NO3 tracer was detected in the dissolved N2O pool in 53 of 72 streams and we assume that direct denitrification of stream water NO3 to N2O (N2O(NO3)) was the source of this 15N-N2O. It is unlikely that nitrification was an important source of labeled 15N-N2O because the 24-h duration of the experiments was too short for the tracer to be assimilated by stream biota, mineralized, and subsequently nitrified. Rates of N2O(NO3) varied by land use with the highest rates observed in high NO3 urban streams and the lowest in reference streams (i.e., those with little land conversion in their watersheds) (Fig. 1A). A positive relationship between N2O(NO3) and stream water NO3− concentration (Fig. 1B) suggests anthropogenic N loading to streams stimulates denitrification and concomitant N2O production. The N2O(DN) rates reported here are lower than most published reports (Fig. 1A), possibly because our in situ measurements are not affected by the experimental artifacts and scaling problems associated with sediment slurries, cores, and chambers used in most previously published estimates (13).

The 15N-NO3 tracer was detected in both the dissolved N2 and N2O pools in 40 of the 72 study sites and we assume all 15N-N2 was produced via direct denitrification. The only other potential source of 15N-N2 production is anammox, a process by which chemolithoautotrophic bacteria convert ammonium (NH4+) and nitrite (NO2−) to N2, but available evidence suggests that anammox is unimportant relative to denitrification in streams and rivers (14). Furthermore, any N2 produced via anammox during the 15N tracer additions would have contained little 15N tracer because stream water NH4+ was minimally labeled with the 15N tracer.

The N2O yield ranged from 0.04% to 5.6% across the 53 streams; however, the interquartile range (0.3–1.0%) was well constrained despite substantial variation in NO3− availability, dissolved O2, primary productivity, sediment organic matter, and stream geomorphology across our study sites (Fig. 2, Table S1). Denitrification proceeds by sequentially reducing NO3− to NO2−, nitric oxide (NO), N2O, and finally N2. Each reduction is per-

Fig. 1. (A) Box plots of stream N2O production rates via denitrification of water column NO3− by catchment land use (reference, agricultural and urban). Benthic N2O production rates reported in other studies are also shown. Significant differences between land-use types were determined with a one-way ANOVA followed by Tukey’s post hoc test (P = 0.004) and are displayed as different lowercase letters above the box plots. See SI Materials and Methods for references. (B) Relationship between stream water NO3− and rates of N2O production via denitrification (r2 = 0.68, P < 0.001). (C) Nitrous oxide emission rates from streams. Significant differences between land use types were determined with a one-way ANOVA (P = 0.002) followed by Tukey’s post hoc test and are displayed as different lowercase letters above the box plots. (D) Relationship between stream water NO3− concentrations and N2O emission rates. The vertical dashed line represents a NO3− threshold (95 μg N L−1) below which N2O emission rates are unrelated to NO3− (two-dimensional Kolmogorov-Smirnov test). Above the threshold NO3− emission rates are positively related to NO3− concentrations as represented by the least-squares best-fit line (solid black). (E) Percentages of stream N2O emissions attributed to direct denitrification. Values >100% indicate N2O was accumulating in the water column. There was no effect of land use (P = 0.13). (F) Variation in the percentage of stream N2O emissions attributed to direct denitrification is partially explained by stream water NO3− concentration (r2 = 0.32, P < 0.001).
formed by a different enzyme and the N$_2$O yield is determined by the relative activities of the N$_2$O-producing and reducing enzymes. There is a positive relationship between the N$_2$O yield and NO$_3^-$ concentration in soils (15, 16) and estuarine sediments (9), possibly because higher NO$_3^-$ availability suppresses nitrous oxide reductase (nos), the enzyme that reduces N$_2$O to N$_2$ (16). However, we did not find a significant relationship between stream water NO$_3^-$ concentration and the N$_2$O yield ($P = 0.09$), despite NO$_3^-$ concentrations spanning five orders of magnitude. Our findings suggest increased NO$_3^-$ loading to streams stimulates overall denitrification rates and concomitant N$_2$O production, but does not increase the N$_2$O yield.

The N$_2$O yield in soils is related to the relative availability of oxidants (NO$_X^-$) and reductants (organic carbon). When the availability of NO$_X^-$ greatly exceeds that of organic carbon, NO$_X^-$ is preferred over N$_2$O as a terminal electron acceptor and N$_2$O accumulates (5, 17–19). The N$_2$O yield was not related to the ratio of stream water NO$_X^-$ concentration to dissolved or particulate organic carbon concentration ($P \geq 0.17$), but was negatively related to stream ecosystem respiration ($P = 0.04$, $r^2 = 0.11$), suggesting factors promoting aerobic respiration (e.g., labile carbon availability) may decrease the N$_2$O yield.

Our data suggest that denitrification in aquatic ecosystems produces lower and less variable N$_2$O yields than in terrestrial ecosystems (Fig. 2). This finding may be explained by differences in oxygen (O$_2$) availability and molecular diffusion rates between aquatic sediments and the partially water-filled pore spaces of soils. Because nos is the most O$_2$ sensitive denitrifying enzyme (20), minor amounts of O$_2$ can suppress the reduction of N$_2$O without inhibiting its production, resulting in an elevated N$_2$O yield. Nitrous oxide is produced as a free intermediate that can escape reduction to N$_2$ by diffusing away from the denitrification zone (16). Partially wet soils may present air-filled routes through which the N$_2$O could more readily evade from soil solutions and ultimately escape to the atmosphere, whereas in aquatic sediments there may be a much greater likelihood of interception of the dissolved N$_2$O by nos before it can diffuse to the overlying water column. Overall, lower O$_2$ availability and gas diffusion rates in aquatic sediments compared with soils may account for the low aquatic N$_2$O yield.

Resource managers have used stream restoration to reduce watershed N export to estuaries and coastal oceans where it can contribute to eutrophication (21). This approach has been criticized on the grounds that stream denitrification alone cannot alleviate watershed N pollution (22) and that enhanced stream denitrification may lead to increased N$_2$O emission (23). Our data demonstrate that the N$_2$O yield in headwater streams is no larger than in other aquatic ecosystems and much lower than in soils (Fig. 2), indicating that measures to promote stream denitrification may have a relatively lower impact on climate change than the promotion of an equivalent amount of denitrification in terrestrial environments.

Other sources of N$_2$O to streams include in-stream nitrification and upwelling groundwater. The sum of these N$_2$O sources determines the total amount of N$_2$O emitted by a stream. We investigated the potential for these additional sources to contribute to total N$_2$O emissions by estimating N$_2$O emission rates from the dissolved N$_2$O concentration and the air–water gas exchange rates in each of the 72 streams. The majority of streams were net sources of N$_2$O to the atmosphere (55 of 72) and only 2 streams showed a diel pattern in emission rates so we did not further consider diel variations in constructing N$_2$O budgets (cf. ref. 24). Stream N$_2$O emission rates were related to watershed land use, with highest emission rates in urban streams, intermediate rates in agricultural streams, and lowest rates in reference streams (Fig. 1C). Stream NO$_3^-$ concentrations predicted N$_2$O emission rates when NO$_3^-$-N exceeded 95 μg·L$^{-1}$ ($P = 0.01$, $r^2 = 0.16$), but below this concentration N$_2$O emission rates were uniformly low and unrelated to NO$_3^-$ concentration (Fig. 1D). This finding suggests that stream N$_2$O emission rates are not solely controlled by direct denitrification within the stream, but are likely enhanced by other sources including inputs of dissolved N$_2$O from groundwater.

We compared N$_2$O$_{DEN}$ (Fig. 1A) to N$_2$O emission rates (Fig. 1C) and found that the direct denitrification of stream water NO$_3^-$ accounted for an average of 26% of N$_2$O emissions (Fig. 1E). This is a conservative estimate of in-stream N$_2$O production via denitrification because our method does not detect N$_2$O produced from the denitrification of NO$_3^-$ regenerated within sediments and biofilms (e.g., indirect denitrification following organic N mineralization and nitrification), which can be the dominant source of NO$_3^-$ supporting denitrification when stream water NO$_3^-$ concentration is low (<140 μg N·L$^{-1}$) (25). The relative importance of N$_2$O$_{DEN}$ as a source of N$_2$O was positively related to stream water NO$_3^-$ concentrations (Fig. 1F), reflecting the greater importance of direct denitrification with increasing stream water NO$_3^-$ concentrations.

Nitrification is a potentially large source of N$_2$O emissions, but we know of no published measurements of N$_2$O production via nitrification in streams. Several studies have shown that nitrification rates can be equal to or greater than denitrification rates in streams (26–28) and rivers (29), and the IPCC assumes nitrification rates exceed denitrification by twofold (30). Measurements of the nitrification N$_2$O yield (i.e., the fraction of nitrified N escaping as N$_2$O) are sparse, but it appears to be within the same range as the denitrification N$_2$O yield (9). Therefore, the IPCC assumes that nitrification produces twice as much N$_2$O emission as denitrification in streams and rivers. Given that N$_2$O$_{DEN}$ produced within the stream contributes an average of 26% of the N$_2$O emitted by headwater streams (Fig. 1E), nitrification could account for as much as an additional 52%, with groundwater inputs and indirect denitrification composing the remainder (Fig. 3). This budget highlights the potential importance of nitrification and indirect denitrification to stream N$_2$O production, but these processes remain poorly understood and therefore represent critical research gaps. Nevertheless, our research demonstrates that headwater streams are not only conduits for the emission of groundwater-derived N$_2$O to the atmosphere, but also active sites of in situ N$_2$O production, particularly where NO$_3^-$ concentrations are elevated by anthropogenic N loading.

The IPCC and others have estimated global anthropogenic N$_2$O emissions from streams and rivers by assuming all anthropogenic N that enters a river network is nitrified to NO$_3^-$ and half of this NO$_3^-$ is then denitrified; the N$_2$O yield is assumed to range from 0.3% to 3.0% in each transformation (9, 30, 31). This approach has shown that streams and rivers may be the source
of 15% of global anthropogenic emissions, but this estimate is poorly constrained due to uncertainty in the N$_2$O yield and proportion of anthropogenic N inputs denitrified in river networks. We improved the estimate of global anthropogenic N$_2$O emissions from lotic systems by modifying an existing global river network model (32) to include spatially explicit N loading in the contemporary era, an empirically derived relationship between denitrification and NO$_3^-$ concentrations based on the LINX II 15N tracer studies (22), and the mean N$_2$O yield of 0.9% reported here. The model estimates the percentage of dissolved inorganic nitrogen (DIN) delivered to the world’s streams and rivers that is converted to N$_2$O via direct denitrification as water flows through the river network, including lakes and reservoirs. However, the model does not include indirect denitrification or denitrification associated with off-channel features (e.g., floodplains, riparian zones) and therefore provides a conservative estimate of anthropogenic N$_2$O emissions (Fig. 3).

The percentage of DIN inputs converted to N$_2$O via direct denitrification of water column NO$_3^-$ in river networks across the globe ranges from 0% to 0.9% (Fig. 4). The percentage of N inputs converted to N$_2$O decreases with increasing N inputs because denitrification becomes less efficient as a NO$_3^-$ sink at higher NO$_3^-$ concentrations (22). We expected that the longer water-residence time in large rivers would result in a larger percentage of N inputs being denitrified compared with smaller river networks. However, we found no effect of catchment area (a surrogate for river network length), likely because the size of the network is confounded by other factors including variation in the distribution of N inputs, temperature, runoff conditions, and the presence of lakes and reservoirs within river networks (32).

We estimate that at the global scale, 0.75% of DIN inputs to river networks are converted to N$_2$O via direct denitrification and nitrification, threefold greater than the IPCC’s estimate. This N$_2$O is likely to be emitted to the atmosphere from the turbulent water columns of streams and rivers. Using the IPCC’s modeling framework and the results of our work, we estimate that nitrification and denitrification in river networks convert 0.68 Tg y$^{-1}$ of anthropogenic DIN inputs to N$_2$O globally, equivalent to 10% of the global anthropogenic N$_2$O emissions of 6.7 Tg N y$^{-1}$ (2) (for calculation details see Global N$_2$O Budget in SI Materials and Methods). This estimate of anthropogenic N$_2$O emissions from river networks is conservative because our model does not include several potentially large sources of N$_2$O (e.g., indirect denitrification and groundwater inputs). We also caution that our estimate of N$_2$O emissions attributed to nitrification is supported by few data (see above and Fig. 3).

We found that the combination of high denitrification rates and large anthropogenic DIN inputs results in substantial anthropogenic N$_2$O emissions from river networks, even though <1% of denitrified NO$_3^-$ was converted to N$_2$O, a much lower percentage than has been reported for upland or flooded soils. Management efforts to enhance stream denitrification will reduce the delivery of N to sensitive coastal waters with less con-
comitant N_2O emissions than the enhancement of a comparable amount of denitrification in soils. Unfortunately, river networks have a limited capacity to remove NO_3^- from the water column and anthropogenic N inputs have already overwhelmed this capacity in many river systems (33, 34). Whereas the trade-off between desirable N removal and undesirable N_2O production may be smaller in streams than in soils, the best way to reduce N export to coastal waters without enhancing N_2O emissions is to reduce N inputs to watersheds.

Materials and Methods

LINX II consisted of $^{15}NO_3^-$ additions to 72 small streams distributed across three land-use categories and eight regions to provide in situ measurements of N_2 and N_2O production via denitrification at the whole-stream scale. We used a standardized set of experimental protocols to measure biogeochemical process rates including denitrification, ecosystem respiration, and gross primary production (35). We also measured a broad suite of physicochemical characteristics including organic matter standing stocks, water column nutrient concentrations, effective stream depth, stream width, stream discharge, and water velocity. The experiments were conducted as previously described (22, 35, 36) and as reported online in the project protocols (http://www.biol.vt.edu/faculty/webster/linx/). A detailed description of the experimental protocols, study site locations, and characteristics can be found in SI Materials and Methods, Fig. S1, and Table S1.

Site Selection. Study sites were selected to encompass a broad range of conditions across three land-use categories and eight regions. Within each region headwater streams (discharge ranged from 0.2–268 L s$^{-1}$) were selected draining basins dominated by native vegetation (reference), urban land use, or agricultural land use, with three sites in each land use for a total of nine sites per region (Table S1, Fig. S1). We selected stream reaches that had minimal groundwater or surface water inputs and were long enough to allow for a measurable amount of in-stream N processing (105–1,830 m).

Isotope Additon and Sampling. The production of N_2 and N_2O via denitrification was measured by continuously adding a solution of sodium bromide (NaBr; conservative tracer) and 15N-enriched potassium nitrate ($K^{15}NO_3$; 88% ^{15}N) to each stream for 24 h beginning at ≈ 12:00 h using a small pump. The pump rate and injectate concentration were chosen to increase the stream water $\delta^{15}NO_3^-$ by 20,000‰ and the Br^- concentration by 100 µg L$^{-1}$. The conservative tracer was used to account for ground and surface water inputs to the reach and to measure channel hydraulic properties. The $K^{15}NO_3^-$ addition resulted in a relatively small (~7.5%) increase in stream water N_2O concentration.

Ten sampling stations were selected along the study reach and water samples were taken for N_2O (concentration and $\delta^{15}N$) N_2O ($\delta^{15}N$, N_2 and N_2O concentration and $\delta^{15}N$) several hours before, 12 h after, and 23 h after the N_2O addition, by the concentrations of N_2 and N_2O by subtracting the average $\delta^{15}N$ for samples collected before the N_2O addition, by the concentrations of N_2O, N_2 or NO_3^- in stream water (concentrations of N_2O and N_2O were measured, whereas N_2 was taken as the concentration in equilibrium with air at the ambient stream temperature) and stream discharge derived from the measured conservative solute tracer concentrations.

Gas Production and Emission Calculations. Rates of N_2 and N_2O production were calculated as best-fit model parameters from a two-compartment model of denitrification linking $^{15}N_2$, $^{15}NO_3^-$, and $^{15}NO_2^-$ over the study reach described in SI Materials and Methods. Nitrous oxide emission rates via diffusive evasion (F, µg N_2O-N m$^{-2}$ h$^{-1}$) were calculated as

$$F = k_2 \times h \times \left(N_2O_{obs} - N_2O_{equl} \right),$$

where h is the stream depth, N_2O_{obs} is the measured concentration of dissolved N_2O in the water (average across all sampling stations), and N_2O_{equl} is the N_2O concentration expected if the stream were in equilibrium with the atmosphere.

Global River Network N_2O Emission Model. Global anthropogenic N_2O emissions from river networks were estimated using a river network model. The model was run under mean annual conditions and accounts for the spatial distribution of DIN loading, temperature, hydrology, and denitrification efficiency loss. Model details and prediction errors can be found in Fig. S2 and SI Materials and Methods.

Acknowledgments. We are grateful to N. E. Ostrom for assistance with stable isotope measurements of N_2 and N_2O and G. P. Robertson for comments on the manuscript. We thank the US Forest Service, National Park Service, and many private landowners for permission to conduct experiments on their lands. We also acknowledge the many workers who helped with the Lotic Intersite Nitrogen experiments. Funding for this research was provided by the National Science Foundation (DEB-0111410). The National Science Foundation's Long Term Ecological Research (NSF-LTER) network hosted many of the study sites included in this research and partially supported several of the authors during the project. We specifically acknowledge Andrews, Central Arizona-Phoenix, Coweeta, Kellogg Biological Station, Konza, Luquillo, Plum Island, and Sevilleta NSF-LTERS for support.

